W Vincent Wilding

List of Publications by Citations

Source: https://exaly.com/author-pdf/8090781/w-vincent-wilding-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 15 40 730 h-index g-index citations papers 801 3.69 40 3.2 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
40	Use of the DIPPR Database for Development of QSPR Correlations: Surface Tension[] <i>Journal of Chemical & Data, 2001, 46, 1007-1012</i>	2.8	122
39	Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. <i>Journal of Hazardous Materials</i> , 2018 , 342, 270-278	12.8	79
38	Phase Equilibrium Measurements on Twelve Binary Mixtures. <i>Journal of Chemical & Data</i> , 1996 , 41, 1223-1238	2.8	49
37	A Note on the Relationship between Organic Solid Density and Liquid Density at the Triple Point Journal of Chemical & Density Buta, 2004 , 49, 1512-1514	2.8	46
36	Critical Point Measurements by a New Flow Method and a Traditional Static Method. <i>Journal of Chemical & Chemi</i>	2.8	39
35	Use of the DIPPR Database for Development of Quantitative Structure P roperty Relationship Correlations: Heat Capacity of Solid Organic Compounds[] <i>Journal of Chemical & Data</i> , 2004 , 49, 24-31	2.8	37
34	Critical Point Measurements for Fourteen Compounds by a Static Method and a Flow Method. Journal of Chemical & Data, 1996, 41, 1252-1254	2.8	37
33	Phase Equilibrium Measurements on Nine Binary Mixtures. <i>Journal of Chemical & Data</i> , 1996 , 41, 1239-1251	2.8	33
32	Measurement of Diffusion Coefficients Important in Modeling the Absorption Rate of Carbon Dioxide into Aqueous N-Methyldiethanolamine. <i>Journal of Chemical & Dioxide into Aqueous N-Methyldiethanolamine</i> . <i>Journal of Chemical & Dioxide into Aqueous N-Methyldiethanolamine</i> . <i>Journal of Chemical & Dioxide into Aqueous N-Methyldiethanolamine</i> .	2.8	32
31	Use of the DIPPR Database for Development of QSPR Correlations: Normal Boiling Point. <i>Journal of Chemical & Data, 2002, 47, 1293-1302</i>	2.8	28
30	Experimental Determination and Re-examination of the Effect of Initial Temperature on the Lower Flammability Limit of Pure Liquids. <i>Journal of Chemical & Data</i> , 2010, 55, 3063-3067	2.8	22
29	Phase Equilibria on Eight Binary Mixtures. Journal of Chemical & Engineering Data, 1997, 42, 1067-1	1027.84	21
28	Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes. <i>Journal of Chemical Physics</i> , 2017 , 146, 194110	3.9	18
27	A Quantitative Structure Property Relation Correlation of the Dielectric Constant for Organic Chemicals. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 41-45	2.8	17
26	Infinite dilution activity coefficients and Henry's law constants of compounds in water using the inert gas stripping method. <i>Fluid Phase Equilibria</i> , 2013 , 348, 45-51	2.5	15
25	Prediction of pure-component flash points for organic compounds. Fire and Materials, 2011, 35, 343-35	11.8	14
24	Proper Use of the DIPPR 801 Database for Creation of Models, Methods, and Processes. <i>Journal of Chemical & Ch</i>	2.8	14

23	Vapor-liquid equilibrium measurements on the N,N-dimethylformamide/1-butanol system at 65 and 125.degree.C. <i>Journal of Chemical & Data</i> , 1991, 36, 346-349	2.8	11
22	Ternary Liquid[liquid Equilibrium of Biodiesel Compounds for Systems Consisting of a Methyl Ester + Glycerin + Water. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 1001-1004	2.8	10
21	Vaporlliquid Equilibrium Measurements on Three Binary Mixtures: Difluoromethane/Hydrogen Chloride, cis-1,3-Dichloropropene/trans-1,3-Dichloropropene, and Pyrrole/Water. <i>Journal of Chemical & Data</i> , 2002, 47, 748-756	2.8	8
20	Vapor PVT and Vapor Pressure of Hydrogen Fluoride. <i>Journal of Chemical & Data</i> , 2014, 59, 983-990	2.8	7
19	An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation. <i>Journal of Chemical Physics</i> , 2015 , 143, 104101	3.9	7
18	Database Tools for Evaluating Thermophysical Property Data. <i>International Journal of Thermophysics</i> , 2007 , 28, 805-823	2.1	7
17	A Local-Composition Model for the Prediction of Mixture Dielectric Constants. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 2430-2437	2.8	6
16	Measurement of the Absorption Rate of Carbon Dioxide into Aqueous Diethanolamine. <i>Journal of Chemical & Chemi</i>	2.8	6
15	An improved approach for predicting the critical constants of large molecules with Gibbs Ensemble Monte Carlo simulation. <i>Fluid Phase Equilibria</i> , 2016 , 425, 432-442	2.5	6
14	Liquid Thermal Conductivities of Acetonitrile, Diethyl Sulfide, Hexamethyleneimine, Tetrahydrothiophene, and Tetramethylethylenediamine. <i>Journal of Chemical & Data</i> , 2004 , 49, 1433-1435	2.8	5
13	Development of an Automated SMILES Pattern Matching Program To Facilitate the Prediction of Thermophysical Properties by Group Contribution Methods [] Journal of Chemical & Data, 2001, 46, 1110-1113	2.8	5
12	The Riedel vapor pressure correlation and multi-property optimization. <i>Fluid Phase Equilibria</i> , 2016 , 429, 149-165	2.5	4
11	Critically Evaluated Database of Environmental Properties: The Importance of Thermodynamic Relationships, Chemical Family Trends, and Prediction Methods. <i>International Journal of Thermophysics</i> , 2013 , 34, 2027-2045	2.1	4
10	New Vapor-Pressure Prediction with Improved Thermodynamic Consistency using the Riedel Equation. <i>Industrial & Equation and Section 2017</i> , 56, 14678-14685	3.9	4
9	VaporLiquid Equilibrium Measurements for Three Binary Mixtures: Allyl Alcohol/Acetonitrile, 2-Butoxyethanol/Acetic Acid, and 1-Methoxy-2-Propanol/2,3-Epoxy-1-Propanol. <i>Journal of Chemical & Mamp; Engineering Data</i> , 2002 , 47, 740-747	2.8	4
8	Developing an internally consistent set of theoretically based prediction models for the critical constants and normal boiling point of large n -alkanes. <i>Fluid Phase Equilibria</i> , 2017 , 449, 104-116	2.5	3
7	Improved Estimates of the Critical Point Constants for Large n-Alkanes Using Gibbs Ensemble Monte Carlo Simulations. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 3640-3649	2.8	2
6	Measurement of Activities of Toluene and Trichloroethylene in Polyisobutylene. <i>Journal of Chemical & Data</i> , 2007, 52, 2233-2236	2.8	2

5	Liquid Heat Capacity Measurements of the Linear Dicarboxylic Acid Family via Modulated Differential Scanning Calorimetry. <i>Journal of Chemical & Differential Scanning Data</i> , 2020 , 65, 591-597	2.8	2	
4	Modulated Differential Scanning Calorimetry Measurements of 27 Compounds. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 2773-2782	2.8	2	
3	A Liquid Heat Capacity Limit for Organic Compounds. <i>International Journal of Thermophysics</i> , 2022 , 43, 1	2.1	1	
2	An improved method for predicting autoignition temperatures based on first principles. <i>Fuel</i> , 2022 , 323, 124245	7.1	1	
1	A study of unexpected autoignition temperature trends for pure n-alkanes. <i>Fuel</i> , 2021 , 306, 121710	7.1	О	