

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8090512/publications.pdf Version: 2024-02-01

		393982	454577
33	2,278	19	30
papers	citations	h-index	g-index
33	33	33	3134
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanisms and regulation ofÂcholesterol homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21, 225-245.	16.1	899
2	Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature, 2020, 588, 479-484.	13.7	125
3	Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nature Communications, 2018, 9, 5138.	5.8	112
4	Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends in Biochemical Sciences, 2019, 44, 273-292.	3.7	109
5	A <i>LIMA1</i> variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science, 2018, 360, 1087-1092.	6.0	104
6	Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Research, 2016, 26, 1099-1111.	5.7	101
7	Routes and mechanisms of postâ€endosomal cholesterol trafficking: A story that never ends. Traffic, 2017, 18, 209-217.	1.3	91
8	Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nature Cell Biology, 2017, 19, 808-819.	4.6	81
9	Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Science China Life Sciences, 2019, 62, 1117-1135.	2.3	64
10	Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing. Journal of Lipid Research, 2019, 60, 1765-1775.	2.0	62
11	Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. Journal of Biological Chemistry, 2018, 293, 4047-4055.	1.6	59
12	Inhibition of the sterol regulatory elementâ€binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology, 2017, 65, 1936-1947.	3.6	57
13	PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P2 homeostasis. Journal of Lipid Research, 2018, 59, 507-514.	2.0	50
14	The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes. Cell Reports, 2017, 19, 2823-2835.	2.9	44
15	Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nature Metabolism, 2019, 1, 570-583.	5.1	42
16	AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. Journal of Lipid Research, 2017, 58, 512-518.	2.0	40
17	Degradation versus Inhibition: Development of Proteolysis-Targeting Chimeras for Overcoming Statin-Induced Compensatory Upregulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Journal of Medicinal Chemistry, 2020, 63, 4908-4928.	2.9	38
18	Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genetics, 2020, 16, e1008955.	1.5	32

Jie Luo

#	Article	IF	CITATIONS
19	POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein and Cell, 2021, 12, 279-296.	4.8	31
20	Ablation of Plasma Prekallikrein Decreases Low-Density Lipoprotein Cholesterol by Stabilizing Low-Density Lipoprotein Receptor and Protects Against Atherosclerosis. Circulation, 2022, 145, 675-687.	1.6	22
21	Schnyder corneal dystrophy-associated UBIAD1 mutations cause corneal cholesterol accumulation by stabilizing HMG-CoA reductase. PLoS Genetics, 2019, 15, e1008289.	1.5	18
22	Mitochondrial DNA Release Contributes to Intestinal Ischemia/Reperfusion Injury. Frontiers in Pharmacology, 2022, 13, 854994.	1.6	15
23	IDOL G51S Variant Is Associated With High Blood Cholesterol and Increases Low-Density Lipoprotein Receptor Degradation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2468-2479.	1.1	13
24	Competitive oxidation and ubiquitylation on the evolutionarily conserved cysteine confer tissue-specific stabilization of Insig-2. Nature Communications, 2020, 11, 379.	5.8	12
25	The non-canonical NF-κB pathway promotes NPC2 expression and regulates intracellular cholesterol trafficking. Science China Life Sciences, 2018, 61, 1222-1232.	2.3	11
26	The Type 3 Adenylyl Cyclase Is Required for the Survival and Maturation of Newly Generated Granule Cells in the Olfactory Bulb. PLoS ONE, 2015, 10, e0122057.	1.1	11
27	Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. , 2022, 1, 25-38.		10
28	Numb directs the subcellular localization of excitatory amino acid transporter type 3 through binding the YXNXXF motif. Journal of Cell Science, 2016, 129, 3104-14.	1.2	8
29	SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. Journal of Biological Chemistry, 2021, 296, 100032.	1.6	8
30	Measurement of Cholesterol Transfer from Lysosome to Peroxisome Using an In Vitro Reconstitution Assay. Methods in Molecular Biology, 2017, 1583, 141-161.	0.4	4
31	Peroxisomes in intracellular cholesterol transport: from basic physiology to brain pathology. , 2021, 1, .		3
32	Hitching a ride to the top: peroxisomes fuel cilium with cholesterol. Science China Life Sciences, 2021, 64, 478-481.	2.3	2
33	Discussion of the Application Based on BSC Indicators †in Performance Evaluation of Clinical Departments †of Public Hospitals. Chinese Medical Record English Edition, 2013, 1, 92-94.	0.1	Ο