W Richard Mccombie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8090392/w-richard-mccombie-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

133 papers 67,556 citations

73 h-index 140 g-index

140 ext. papers

76,811 ext. citations

18.5 avg, IF

7.73 L-index

#	Paper	IF	Citations
133	Transcriptional Silencing of Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. <i>Cancer Discovery</i> , 2021 , 11, 2300-2315	24.4	5
132	SLC5A3-dependent myo-inositol auxotrophy in acute myeloid leukemia. Cancer Discovery, 2021,	24.4	6
131	SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling. <i>Plant Physiology</i> , 2020 , 182, 215-227	6.6	10
130	Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. <i>Genome Research</i> , 2020 , 30, 1258-1273	9.7	25
129	Future Promises and Concerns of Ubiquitous Next-Generation Sequencing. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2019 , 9,	5.4	1
128	Next-Generation Sequencing Technologies. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2019 , 9,	5.4	57
127	A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing. <i>Genome Research</i> , 2018 , 28, 921-932	9.7	54
126	Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6494-6499	11.5	83
125	Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. <i>Genome Research</i> , 2018 , 28, 1126-1135	9.7	74
124	Solution-Phase Exome Capture. <i>Cold Spring Harbor Protocols</i> , 2017 , 2017, pdb.prot094680	1.2	
123	Improved maize reference genome with single-molecule technologies. <i>Nature</i> , 2017 , 546, 524-527	50.4	643
122	Hybrid assembly with long and short reads improves discovery of gene family expansions. <i>BMC Genomics</i> , 2017 , 18, 541	4.5	33
121	1D Genome Sequencing on the Oxford Nanopore MinION. <i>Current Protocols in Human Genetics</i> , 2017 , 94, 18.11.1-18.11.14	3.2	3
120	Coming of age: ten years of next-generation sequencing technologies. <i>Nature Reviews Genetics</i> , 2016 , 17, 333-51	30.1	2189
119	A trimming-and-retrieving alignment scheme for reduced representation bisulfite sequencing. <i>Bioinformatics</i> , 2015 , 31, 2040-2	7.2	3
118	Assembly and diploid architecture of an individual human genome via single-molecule technologies. <i>Nature Methods</i> , 2015 , 12, 780-6	21.6	383
117	Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. <i>Genome Research</i> , 2015 , 25, 1750-6	9.7	257

(2013-2015)

116	The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. <i>Genome Biology</i> , 2015 , 16, 79	18.3	62
115	Unlocking the treasure trove: from genes to schizophrenia biology. <i>Schizophrenia Bulletin</i> , 2014 , 40, 492	2-6 3	13
114	The contribution of de novo coding mutations to autism spectrum disorder. <i>Nature</i> , 2014 , 515, 216-21	50.4	1470
113	FamAnn: an automated variant annotation pipeline to facilitate target discovery for family-based sequencing studies. <i>Bioinformatics</i> , 2014 , 30, 1175-1176	7.2	7
112	De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. <i>Molecular Psychiatry</i> , 2014 , 19, 652-8	15.1	263
111	Two waves of de novo methylation during mouse germ cell development. <i>Genes and Development</i> , 2014 , 28, 1544-9	12.6	89
110	Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. <i>Plant Journal</i> , 2014 , 79, 162-72	6.9	30
109	708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. <i>Molecular Psychiatry</i> , 2014 , 19, 668-75	15.1	48
108	Validation and assessment of variant calling pipelines for next-generation sequencing. <i>Human Genomics</i> , 2014 , 8, 14	6.8	79
107	Error correction and assembly complexity of single molecule sequencing reads. 2014,		59
106	Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett & esophagus. <i>Oncogene</i> , 2014 , 33, 347-57	9.2	71
105	Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. <i>Genome Biology</i> , 2014 , 15, 506	18.3	168
104	Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic		
104	profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 9, S1	3.6	69
103		3.65.8	1110
	datasets. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 9, S1 Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence		
103	datasets. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 9, S1 Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. <i>Rice</i> , 2013 , 6, 4 Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. <i>Rice</i>	5.8	1110
103	datasets. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 9, S1 Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. <i>Rice</i> , 2013 , 6, 4 Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. <i>Rice</i> , 2013 , 6, 1 The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis	5.8 5.8	1110 93

98	A hybrid likelihood model for sequence-based disease association studies. <i>PLoS Genetics</i> , 2013 , 9, e1003	3 8 24	16
97	The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. <i>Genome Research</i> , 2013 , 23, 1651-62	9.7	199
96	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 7940-5	11.5	173
95	Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. <i>BMC Genomics</i> , 2013 , 14, 701	4.5	69
94	Current challenges in de novo plant genome sequencing and assembly. <i>Genome Biology</i> , 2012 , 13, 243	18.3	131
93	Analysis of the bread wheat genome using whole-genome shotgun sequencing. <i>Nature</i> , 2012 , 491, 705-	15 0.4	821
92	De novo gene disruptions in children on the autistic spectrum. <i>Neuron</i> , 2012 , 74, 285-99	13.9	1052
91	Maize HapMap2 identifies extant variation from a genome in flux. <i>Nature Genetics</i> , 2012 , 44, 803-7	36.3	470
90	The tomato genome sequence provides insights into fleshy fruit evolution. <i>Nature</i> , 2012 , 485, 635-41	50.4	2138
89	Hybrid error correction and de novo assembly of single-molecule sequencing reads. <i>Nature Biotechnology</i> , 2012 , 30, 693-700	44.5	758
88	Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). <i>American Journal of Botany</i> , 2012 , 99, 397-406	2.7	68
87	Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. <i>Nature Biotechnology</i> , 2011 , 30, 83-9	44.5	587
86	High-Throughput Sequencing 2011 , 461-478		2
85	Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. <i>Cell</i> , 2011 , 146, 1029-41	56.2	280
84	Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. <i>Molecular Cell</i> , 2011 , 44, 17-28	17.6	228
83	A comparative analysis of exome capture. <i>Genome Biology</i> , 2011 , 12, R97	18.3	99
82	Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures. <i>PLoS ONE</i> , 2011 , 6, e16403	3.7	29
81	Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. <i>Plant Journal</i> , 2011 , 66, 241-6	6.9	52

80	The genome of Theobroma cacao. <i>Nature Genetics</i> , 2011 , 43, 101-8	36.3	502
79	Tumour evolution inferred by single-cell sequencing. <i>Nature</i> , 2011 , 472, 90-4	50.4	1834
78	Establishing the baseline level of repetitive element expression in the human cortex. <i>BMC Genomics</i> , 2011 , 12, 495	4.5	11
77	Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. <i>Physiological Genomics</i> , 2011 , 43, 69-76	3.6	21
76	SpliceTrap: a method to quantify alternative splicing under single cellular conditions. <i>Bioinformatics</i> , 2011 , 27, 3010-6	7.2	73
75	Distinct p53 genomic binding patterns in normal and cancer-derived human cells. <i>Cell Cycle</i> , 2011 , 10, 4237-49	4.7	73
74	A functional phylogenomic view of the seed plants. <i>PLoS Genetics</i> , 2011 , 7, e1002411	6	117
73	Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. <i>Rna</i> , 2010 , 16, 1634-45	5.8	61
72	Detailed analysis of a contiguous 22-Mb region of the maize genome. <i>PLoS Genetics</i> , 2009 , 5, e1000728	6	34
71	Mapping epigenetic mutations in fission yeast using whole-genome next-generation sequencing. <i>Genome Research</i> , 2009 , 19, 1077-83	9.7	40
7°	High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. <i>Genome Research</i> , 2009 , 19, 1593-605	9.7	183
69	Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. <i>Cancer Cell</i> , 2009 , 16, 324-35	24.3	143
68	Prepublication data sharing. <i>Nature</i> , 2009 , 461, 168-70	50.4	197
67	Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. <i>Nature Protocols</i> , 2009 , 4, 960-74	18.8	153
66	Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. <i>Cell</i> , 2009 , 137, 522-35	56.2	627
65	The B73 maize genome: complexity, diversity, and dynamics. <i>Science</i> , 2009 , 326, 1112-5	33.3	2949
64	Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. <i>Nature Methods</i> , 2008 , 5, 679-8	8 2 1.6	136
63	Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. <i>Plant Journal</i> , 2008 , 55, 514-25	6.9	47

62	High-content analysis of cancer genome DNA alterations. <i>Current Opinion in Genetics and Development</i> , 2008 , 18, 68-72	4.9	13
61	An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. <i>Cell</i> , 2008 , 135, 852-64	56.2	366
60	Topoisomerase levels determine chemotherapy response in vitro and in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9053-8	11.5	222
59	Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. <i>Genome Research</i> , 2008 , 18, 19-29	9.7	97
58	Genome-wide in situ exon capture for selective resequencing. <i>Nature Genetics</i> , 2007 , 39, 1522-7	36.3	565
57	Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. <i>Genome Research</i> , 2007 , 17, 175-83	9.7	200
56	Epigenetic natural variation in Arabidopsis thaliana. <i>PLoS Biology</i> , 2007 , 5, e174	9.7	337
55	Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 7444-9	11.5	112
54	Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. <i>Plant Cell Reports</i> , 2006 , 25, 592-8	5.1	26
53	Second-generation shRNA libraries covering the mouse and human genomes. <i>Nature Genetics</i> , 2005 , 37, 1281-8	36.3	522
52	Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. <i>Theoretical and Applied Genetics</i> , 2005 , 111, 949-55	6	22
51	Sorghum genome sequencing by methylation filtration. <i>PLoS Biology</i> , 2005 , 3, e13	9.7	126
50	Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. <i>Genome Research</i> , 2005 , 15, 1284-91	9.7	66
49	Comparing low coverage random shotgun sequence data from Brassica oleracea and Oryza sativa genome sequence for their ability to add to the annotation of Arabidopsis thaliana. <i>Genome Research</i> , 2005 , 15, 496-504	9.7	25
48	Differential methylation of genes and repeats in land plants. Genome Research, 2005, 15, 1431-40	9.7	119
47	Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. <i>Genome</i> , 2004 , 47, 666-79	2.4	51
46	The mouse genome: experimental examination of gene predictions and transcriptional start sites. <i>Genome Research</i> , 2004 , 14, 2424-9	9.7	11
45	Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods, 2004, 1, 241-8	21.6	89

(2001-2004)

44	A resource for large-scale RNA-interference-based screens in mammals. <i>Nature</i> , 2004 , 428, 427-31	50.4	561
43	Role of transposable elements in heterochromatin and epigenetic control. <i>Nature</i> , 2004 , 430, 471-6	50.4	958
42	Sequencing the maize genome. Current Opinion in Plant Biology, 2004, 7, 102-7	9.9	48
41	Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. <i>Functional and Integrative Genomics</i> , 2004 , 4, 102-17	3.8	40
40	Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. <i>Plant Physiology</i> , 2003 , 131, 1018-26	6.6	59
39	Secretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps. <i>Plant Physiology</i> , 2003 , 132, 698-708	6.6	21
38	Gene enrichment in plant genomic shotgun libraries. Current Opinion in Plant Biology, 2003, 6, 150-6	9.9	31
37	Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. <i>Cancer Cell</i> , 2003 , 3, 297-302	24.3	193
36	Maize genome sequencing by methylation filtration. <i>Science</i> , 2003 , 302, 2115-7	33.3	189
35	In-depth view of structure, activity, and evolution of rice chromosome 10. <i>Science</i> , 2003 , 300, 1566-9	22.2	224
		33.3	234
34	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22	2.4	3
34	A survey of canine expressed sequence tags and a display of their annotations through a flexible		
	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22 Genes and transposons are differentially methylated in plants, but not in mammals. <i>Genome</i>	2.4 9.7	3
33	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22 Genes and transposons are differentially methylated in plants, but not in mammals. <i>Genome Research</i> , 2003 , 13, 2658-64	2.4 9.7 50.4	3 108
33	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22 Genes and transposons are differentially methylated in plants, but not in mammals. <i>Genome Research</i> , 2003 , 13, 2658-64 Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62	2.4 9.7 50.4	3 108 5376
33 32 31	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22 Genes and transposons are differentially methylated in plants, but not in mammals. <i>Genome Research</i> , 2003 , 13, 2658-64 Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62 The genome sequence of Schizosaccharomyces pombe. <i>Nature</i> , 2002 , 415, 871-80	2.4 9.7 50.4	3 108 5376 1281
33 32 31 30	A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. <i>Journal of Heredity</i> , 2003 , 94, 15-22 Genes and transposons are differentially methylated in plants, but not in mammals. <i>Genome Research</i> , 2003 , 13, 2658-64 Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62 The genome sequence of Schizosaccharomyces pombe. <i>Nature</i> , 2002 , 415, 871-80 What is finished, and why does it matter. <i>Genome Research</i> , 2002 , 12, 669-71	2.4 9.7 50.4 50.4	3 108 5376 1281 50

26	Initial sequencing and analysis of the human genome. <i>Nature</i> , 2001 , 409, 860-921	50.4	17366
25	Identification of mesoderm development (mesd) candidate genes by comparative mapping and genome sequence analysis. <i>Genomics</i> , 2001 , 72, 88-98	4.3	16
24	The first plant genome. <i>Cell</i> , 2001 , 105, 571-4	56.2	12
23	Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. <i>Nature</i> , 2000 , 408, 823-6	50.4	137
22	Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. <i>Nature</i> , 2000 , 408, 796-8	15 0.4	7262
21	The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 11416-21	11.5	164
20	zA map for sequence analysis of the Arabidopsis thaliana genome. <i>Nature Genetics</i> , 1999 , 22, 265-70	36.3	109
19	Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. <i>Nature Genetics</i> , 1999 , 23, 305-8	36.3	209
18	Genetic definition and sequence analysis of Arabidopsis centromeres. <i>Science</i> , 1999 , 286, 2468-74	33.3	381
17	Genetic analysis using genomic representations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 4487-92	11.5	74
16	Rapid isolation of cDNA by hybridization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 3764-9	11.5	5
15	PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. <i>Science</i> , 1997 , 275, 1943-7	33.3	4006
14	Fluorescence-based sequencing of double-stranded DNA by hexamer string priming. <i>Analytical Biochemistry</i> , 1996 , 241, 228-37	3.1	6
13	Rapid and reliable fluorescent cycle sequencing of double-stranded templates. <i>DNA Sequence</i> , 1992 , 2, 289-96		86
12	Sequencing and analysis of genomic fragments from the NF1 locus. <i>DNA Sequence</i> , 1992 , 3, 237-43		11
11	An insert mutation in the chromosome 20 amyloid precursor gene in a Gerstmann-Strüssler-Scheinker family. <i>Journal of the Neurological Sciences</i> , 1992 , 111, 189-94	3.2	54
10	Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. <i>Nature Genetics</i> , 1992 , 1, 124-31	36.3	170
9	Creutzfeldt-Jakob disease cosegregates with the codon 178Asn PRNP mutation in families of European origin. <i>Annals of Neurology</i> , 1992 , 31, 274-81	9.4	94

LIST OF PUBLICATIONS

8	New mutation in scrapie amyloid precursor gene (at codon 178) in Finnish Creutzfeldt-Jakob kindred. <i>Lancet, The</i> , 1991 , 337, 425	40	179	
7	Complementary DNA sequencing: expressed sequence tags and human genome project. <i>Science</i> , 1991 , 252, 1651-6	33.3	1893	
6	Long-read sequencing reveals rapid evolution of immunity- and cancer-related genes in bats		2	
5	Third-generation sequencing and the future of genomics		55	
4	Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line		6	
3	Transcriptional silencing of ALDH2 in acute myeloid leukemia confers a dependency on Fanconi anemia proteins		2	
2	In vivogenetic screen identifies a SLC5A3-dependent myo-inositol auxotrophy in acute myeloid leukem	ia	3	
1	Comprehensive analysis of structural variants in breast cancer genomes using single molecule sequenc	ing	3	