Damien Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8090363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Groundwaterâ€derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnology and Oceanography, 2013, 58, 475-488.	3.1	280
2	Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochimica Et Cosmochimica Acta, 2015, 150, 211-225.	3.9	164
3	Mangrove mortality in a changing climate: An overview. Estuarine, Coastal and Shelf Science, 2018, 215, 241-249.	2.1	154
4	Are global mangrove carbon stocks driven by rainfall?. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2600-2609.	3.0	150
5	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	12.8	150
6	Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles, 2016, 30, 753-766.	4.9	147
7	Methane emissions partially offset "blue carbon―burial in mangroves. Science Advances, 2018, 4, eaao4985.	10.3	141
8	Groundwater–surface water exchange in a mangrove tidal creek: Evidence from natural geochemical tracers and implications for nutrient budgets. Marine Chemistry, 2013, 156, 27-37.	2.3	127
9	Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Marine Chemistry, 2015, 168, 69-79.	2.3	113
10	Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography, 2019, 64, 996-1013.	3.1	113
11	Coupling Automated Radon and Carbon Dioxide Measurements in Coastal Waters. Environmental Science & Technology, 2012, 46, 7685-7691.	10.0	109
12	Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal airâ€water CO ₂ flux. Global Biogeochemical Cycles, 2012, 26, .	4.9	106
13	Groundwater Discharge as a Source of Dissolved Carbon and Greenhouse Gases in a Subtropical Estuary. Estuaries and Coasts, 2016, 39, 639-656.	2.2	106
14	Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biology Letters, 2018, 14, 20180200.	2.3	106
15	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	12.8	105
16	Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. Journal of Hydrology, 2013, 493, 30-42.	5.4	102
17	Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	100
18	Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 2015, 528, 703-719.	5.4	100

#	Article	IF	CITATIONS
19	Addressing calcium carbonate cycling in blue carbon accounting. Limnology and Oceanography Letters, 2017, 2, 195-201.	3.9	100
20	Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry, 2011, 102, 111-133.	3.5	97
21	Quantity and quality of organic matter (detritus) drives N ₂ effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Global Biogeochemical Cycles, 2013, 27, 1083-1095.	4.9	82
22	Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters, 2016, 43, 3334-3341.	4.0	79
23	Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential. Journal of Geophysical Research C: Biogeosciences, 2014, 119, 1698-1716.	3.0	72
24	Novel Use of Cavity Ring-down Spectroscopy to Investigate Aquatic Carbon Cycling from Microbial to Ecosystem Scales. Environmental Science & Technology, 2013, 47, 12938-12945.	10.0	70
25	Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Marine Chemistry, 2015, 171, 10-20.	2.3	68
26	Spatial and temporal variability of CO ₂ and CH ₄ gas transfer velocities and quantification of the CH ₄ microbubble flux in mangrove dominated estuaries. Limnology and Oceanography, 2017, 62, 561-578.	3.1	67
27	Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: Implications for global estimates of benthic DOC fluxes. Journal of Geophysical Research, 2010, 115, .	3.3	66
28	Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytologist, 2019, 224, 146-154.	7.3	66
29	Metabolism of different benthic habitats and their contribution to the carbon budget of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry, 2011, 102, 87-110.	3.5	65
30	Examining 239+240 Pu, 210 Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. Journal of Environmental Radioactivity, 2016, 151, 623-629.	1.7	65
31	Punching above their weight: Large release of greenhouse gases from small agricultural dams. Global Change Biology, 2019, 25, 721-732.	9.5	64
32	Drivers of <i>p</i> CO ₂ variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge. Global Biogeochemical Cycles, 2014, 28, 398-414.	4.9	63
33	The contribution of denitrification and burial to the nitrogen budgets of three geomorphically distinct <scp>A</scp> ustralian estuaries: Importance of seagrass habitats. Limnology and Oceanography, 2016, 61, 1144-1156.	3.1	63
34	Seasonal and temporal CO2 dynamics in three tropical mangrove creeks – A revision of global mangrove CO2 emissions. Geochimica Et Cosmochimica Acta, 2018, 222, 729-745.	3.9	63
35	The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review. Ecosystems, 2019, 22, 508-527.	3.4	62
36	Pristine mangrove creek waters are a sink of nitrous oxide. Scientific Reports, 2016, 6, 25701.	3.3	61

#	Article	IF	CITATIONS
37	Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N″abeling study. Limnology and Oceanography, 2007, 52, 1930-1942.	3.1	57
38	Automated, in situ measurements of dissolved CO ₂ , CH ₄ , and δ ¹³ C values using cavity enhanced laser absorption spectrometry: Comparing response times of airâ€water equilibrators. Limnology and Oceanography: Methods, 2016, 14, 323-337.	2.0	57
39	Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Marine Chemistry, 2015, 174, 1-12.	2.3	56
40	Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophysical Research Letters, 2017, 44, 4889-4896.	4.0	54
41	Wetland methane emissions dominated by plantâ€mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnology and Oceanography, 2019, 64, 1895-1912.	3.1	52
42	Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications, 2021, 12, 2127.	12.8	51
43	Estuarine canal estate waters: Hotspots of CO2 outgassing driven by enhanced groundwater discharge?. Marine Chemistry, 2014, 167, 82-92.	2.3	50
44	Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems. Limnology and Oceanography, 2019, 64, 182-196.	3.1	50
45	Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary. Science of the Total Environment, 2016, 566-567, 1440-1453.	8.0	49
46	Estuaries as Sources and Sinks of N ₂ O Across a Land Use Gradient in Subtropical Australia. Global Biogeochemical Cycles, 2018, 32, 877-894.	4.9	48
47	Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuarine, Coastal and Shelf Science, 2014, 143, 65-76.	2.1	46
48	High pore-water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochimica Et Cosmochimica Acta, 2019, 247, 106-120.	3.9	45
49	Dissolved iron exports from an estuary surrounded by coastal wetlands: Can small estuaries be a significant source of Fe to the ocean?. Marine Chemistry, 2015, 176, 75-82.	2.3	44
50	Seasonal, daily and diel N ₂ effluxes in permeable carbonate sediments. Biogeosciences, 2013, 10, 2601-2615.	3.3	43
51	Groundwater, Acid and Carbon Dioxide Dynamics Along a Coastal Wetland, Lake and Estuary Continuum. Estuaries and Coasts, 2016, 39, 1325-1344.	2.2	43
52	Manganese and iron release from mangrove porewaters: A significant component of oceanic budgets?. Marine Chemistry, 2016, 184, 43-52.	2.3	42
53	Intermittently Closed and Open Lakes and/or Lagoons (ICOLLs) as groundwater-dominated coastal systems: Evidence from seasonal radon observations. Journal of Hydrology, 2016, 535, 612-624.	5.4	42
54	Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochimica Et Cosmochimica Acta, 2017, 200, 295-309.	3.9	42

#	Article	IF	CITATIONS
55	The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary Estuarine, Coastal and Shelf Science, 2018, 208, 83-95.	2.1	42
56	Factors controlling seasonal CO2 and CH4 emissions in three tropical mangrove-dominated estuaries in Australia. Estuarine, Coastal and Shelf Science, 2018, 215, 69-82.	2.1	41
57	Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application. Limnology and Oceanography: Methods, 2015, 13, 391-401.	2.0	40
58	Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnology and Oceanography Letters, 2017, 2, 1-8.	3.9	40
59	A seasonal source and sink of nitrous oxide in mangroves: Insights from concentration, isotope, and isotopomer measurements. Geochimica Et Cosmochimica Acta, 2018, 238, 169-192.	3.9	39
60	Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochimica Et Cosmochimica Acta, 2019, 253, 142-158.	3.9	39
61	Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated highâ€frequency observations. Geophysical Research Letters, 2015, 42, 2885-2892.	4.0	38
62	Insights into estuarine benthic dissolved organic carbon (DOC) dynamics using δ13C-DOC values, phospholipid fatty acids and dissolved organic nutrient fluxes. Geochimica Et Cosmochimica Acta, 2011, 75, 1889-1902.	3.9	37
63	Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and Î 13C signatures in a subtropical river network. Science of the Total Environment, 2017, 575, 545-563.	8.0	37
64	Operationalizing marketable blue carbon. One Earth, 2022, 5, 485-492.	6.8	34
65	Differences in benthic metabolism, nutrient fluxes, and denitrification in <i>Caulerpa taxifolia</i> communities compared to uninvaded bare sediment and seagrass (<i>Zostera capricorni</i>) habitats. Limnology and Oceanography, 2011, 56, 1737-1750.	3.1	33
66	Hot spot of CH4 production and diffusive flux in rivers with high urbanization. Water Research, 2021, 204, 117624.	11.3	33
67	Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia). Journal of Environmental Radioactivity, 2016, 154, 83-92.	1.7	32
68	High CO ₂ evasion during floods in an Australian subtropical estuary downstream from a modified acidic floodplain wetland. Limnology and Oceanography, 2015, 60, 42-56.	3.1	31
69	Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau, Micronesia. Estuarine, Coastal and Shelf Science, 2019, 218, 340-348.	2.1	31
70	The mangrove <scp>CO₂</scp> pump: Tidally driven poreâ€water exchange. Limnology and Oceanography, 2021, 66, 1563-1577.	3.1	31
71	Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream. Science of the Total Environment, 2016, 550, 645-657.	8.0	30
72	Tree stem methane emissions from subtropical lowland forest (Melaleuca quinquenervia) regulated by local and seasonal hydrology. Biogeochemistry, 2020, 151, 273-290.	3.5	29

#	Article	IF	CITATIONS
73	Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia). Environmental Earth Sciences, 2015, 74, 779-792.	2.7	28
74	Benthic carbon metabolism in southeast Australian estuaries: habitat importance, driving forces, and application of artificial neural network models. Marine Ecology - Progress Series, 2011, 439, 97-115.	1.9	28
75	Mapping ecosystem processes and function across shallow seascapes. Continental Shelf Research, 2011, 31, S162-S172.	1.8	27
76	Bioturbatorâ€stimulated loss of seagrass sediment carbon stocks. Limnology and Oceanography, 2019, 64, 342-356.	3.1	27
77	Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests. New Phytologist, 2021, 230, 2200-2212.	7.3	27
78	Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations. Estuarine, Coastal and Shelf Science, 2017, 194, 66-76.	2.1	26
79	An Australian blue carbon method to estimate climate change mitigation benefits of coastal wetland restoration. Restoration Ecology, 2023, 31, .	2.9	25
80	Enrichment of Radon and Carbon Dioxide in the Open Atmosphere of an Australian Coal Seam Gas Field. Environmental Science & Technology, 2013, 47, 3099-3104.	10.0	24
81	Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuarine, Coastal and Shelf Science, 2018, 207, 499-509.	2.1	24
82	A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F). Ecosystems, 2020, 23, 1676-1689.	3.4	24
83	Coastal carbon cycle changes following mangrove loss. Limnology and Oceanography, 2020, 65, 2642-2656.	3.1	24
84	Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers. Chemical Geology, 2016, 440, 313-325.	3.3	23
85	Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations. Environmental Science & Technology, 2017, 51, 13771-13778.	10.0	23
86	The carbon dioxide evasion cycle of an intermittent first-order stream: contrasting water–air and soil–air exchange. Biogeochemistry, 2017, 132, 87-102.	3.5	22
87	Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary. Biogeosciences, 2019, 16, 1799-1815.	3.3	22
88	Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide Dynamics in a Coastal Lagoon. Estuaries and Coasts, 2019, 42, 1015-1031.	2.2	22
89	Mangroves as a Source of Greenhouse Gases to the Atmosphere and Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study From the Everglades National Park, Florida. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005812.	3.0	21
90	Mapping Methane and Carbon Dioxide Concentrations and Î′13C Values in the Atmosphere of Two Australian Coal Seam Gas Fields. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	20

#	Article	IF	CITATIONS
91	Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia). PLoS ONE, 2018, 13, e0198678.	2.5	20
92	Seasonal Drivers of Carbon Dioxide Dynamics in a Hydrologically Modified Subtropical Tidal River and Estuary (Caboolture River, Australia). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1827-1849.	3.0	19
93	Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient. Aquatic Sciences, 2019, 81, 1.	1.5	19
94	Land use drives nitrous oxide dynamics in estuaries on regional and global scales. Limnology and Oceanography, 2020, 65, 1903-1920.	3.1	19
95	Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine, Coastal and Shelf Science, 2021, 249, 107064.	2.1	19
96	Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods. Water Resources Research, 2017, 53, 544-562.	4.2	18
97	Winter emissions of <scp>CO</scp> ₂ , <scp>CH</scp> ₄ , and N ₂ O from temperate agricultural dams: fluxes, sources, and processes. Ecosphere, 2019, 10, e02914.	2.2	18
98	Tracerâ€Aided Modeling in the Lowâ€Relief, Wetâ€Dry Tropics Suggests Water Ages and DOC Export Are Driven by Seasonal Wetlands and Deep Groundwater. Water Resources Research, 2020, 56, e2019WR026175.	4.2	18
99	Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling. Science of the Total Environment, 2017, 580, 367-379.	8.0	17
100	Determining coral reef calcification and primary production using automated alkalinity, pH and pCO measurements at high temporal resolution. Estuarine, Coastal and Shelf Science, 2018, 209, 80-88.	2.1	17
101	Coral Reef Calcification and Production After the 2016 Bleaching Event at Lizard Island, Great Barrier Reef. Journal of Geophysical Research: Oceans, 2019, 124, 4003-4016.	2.6	17
102	Net landscape carbon balance of a tropical savanna: Relative importance of fire and aquatic export in offsetting terrestrial production. Global Change Biology, 2020, 26, 5899-5913.	9.5	17
103	Changing sediment and surface water processes increase CH4 emissions from human-impacted estuaries. Geochimica Et Cosmochimica Acta, 2020, 280, 130-147.	3.9	17
104	Groundwater methane in a potential coal seam gas extraction region. Journal of Hydrology: Regional Studies, 2015, 4, 452-471.	2.4	16
105	iAMES: An <u>i</u> nexpensive, <u>A</u> utomated <u>M</u> ethane <u>E</u> bullition <u>S</u> ensor. Environmental Science & Technology, 2019, 53, 6420-6426.	10.0	16
106	An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia. Hydrogeology Journal, 2019, 27, 2121-2136.	2.1	16
107	Stable isotopes indicate ecosystem restructuring following climateâ€driven mangrove dieback. Limnology and Oceanography, 2020, 65, 1251-1263.	3.1	16
108	Alkalinity Production Coupled to Pyrite Formation Represents an Unaccounted Blue Carbon Sink. Global Biogeochemical Cycles, 2021, 35, e2020GB006785.	4.9	16

#	Article	IF	CITATIONS
109	Stable isotopes reduce parameter uncertainty of an estuarine carbon cycling model. Environmental Modelling and Software, 2016, 79, 233-255.	4.5	15
110	Radonâ€traced poreâ€water as a potential source of CO ₂ and CH ₄ to receding black and clear water environments in the Amazon Basin. Limnology and Oceanography Letters, 2018, 3, 375-383.	3.9	15
111	Drivers of CO2 along a mangrove-seagrass transect in a tropical bay: Delayed groundwater seepage and seagrass uptake. Continental Shelf Research, 2019, 172, 57-67.	1.8	14
112	Hypersaline tidal flats as important "blue carbon―systems: a case study from three ecosystems. Biogeosciences, 2021, 18, 2527-2538.	3.3	14
113	Large variability in organic carbon and CaCO3 burial in seagrass meadows: a case study from three Australian estuaries. Marine Ecology - Progress Series, 2019, 616, 211-218.	1.9	14
114	Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record. Biogeosciences, 2020, 17, 4707-4726.	3.3	14
115	In-situ measurement on air–water flux of CH4, CO2 and their carbon stable isotope in lakes of northeast Tibetan Plateau. Advances in Climate Change Research, 2022, 13, 279-289.	5.1	14
116	Seasonal Variations in Dissolved Carbon Inventory and Fluxes in a Mangroveâ€Dominated Estuary. Global Biogeochemical Cycles, 2020, 34, e2019GB006515.	4.9	13
117	Climate change mitigation and improvement of water quality from the restoration of a subtropical coastal wetland. Ecological Applications, 2022, 32, e2620.	3.8	13
118	Geomorphic controls on fluvial carbon exports and emissions from upland swamps in eastern Australia. Science of the Total Environment, 2018, 618, 765-776.	8.0	12
119	Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle. Agricultural and Forest Meteorology, 2018, 260-261, 262-272.	4.8	12
120	Net Drawdown of Greenhouse Gases (CO2, CH4 and N2O) by a Temperate Australian Seagrass Meadow. Estuaries and Coasts, 2022, 45, 2026-2039.	2.2	12
121	Carbon self-utilization may assist Caulerpa taxifolia invasion. Limnology and Oceanography, 2011, 56, 1824-1831.	3.1	11
122	Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLoS ONE, 2020, 15, e0242339.	2.5	11
123	Land-use intensity alters both the source and fate of CO2 within eight sub-tropical estuaries. Geochimica Et Cosmochimica Acta, 2020, 268, 107-122.	3.9	10
124	Drought, megafires and flood - climate extreme impacts on catchment-scale river water quality on Australia's east coast. Water Research, 2022, 218, 118510.	11.3	10
125	Drivers of carbon isotopic fractionation in a coral reef lagoon: Predominance of demand over supply. Geochimica Et Cosmochimica Acta, 2015, 153, 105-115.	3.9	9
126	Assessing groundwater-surface water connectivity using radon and major ions prior to coal seam gas development (Richmond River Catchment, Australia). Applied Geochemistry, 2016, 73, 35-48.	3.0	9

#	Article	IF	CITATIONS
127	The role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada). Environmental Earth Sciences, 2019, 78, 1.	2.7	9
128	Submarine groundwater discharge drives nitrous oxide source/sink dynamics in a metropolitan estuary. Limnology and Oceanography, 2021, 66, 1665-1686.	3.1	9
129	Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses. Biogeosciences, 2021, 18, 5085-5096.	3.3	9
130	Seasonal and Diurnal Dynamics of Atmospheric Radon, Carbon Dioxide, Methane, δ13C-CO2 and δ13C-CH4 in a Proposed Australian Coal Seam Gas Field. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	8
131	Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and <i>l´</i> ¹³ C–DIC. Biogeosciences, 2017 14 1305-1313	3.3	8
132	Spatial Distribution of CO ₂ , CH ₄ , and N ₂ O in the Great Barrier Reef Revealed Through High Resolution Sampling and Isotopic Analysis. Geophysical Research Letters, 2021, 48, e2021GL092534.	4.0	8
133	Development of an improved hydrogeological and hydro-geochemical conceptualization of a complex aquifer system in Ethiopia. Hydrogeology Journal, 2020, 28, 2727-2746.	2.1	7
134	Carbon dioxide hydrodynamics along a wetland-lake-stream-waterfall continuum (Blue Mountains,) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5
135	Structure and Function of Warm Temperate East Australian Coastal Lagoons. Marine Science, 2010, , 457-481.	0.5	7
136	New insights into the hydrogeology and groundwater flow in the Great Barrier Reef catchment, Australia, revealed through 3D modelling. Journal of Hydrology: Regional Studies, 2020, 30, 100708.	2.4	6
137	Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia. Biogeosciences, 2020, 17, 5599-5613.	3.3	6
138	The legacy and drivers of groundwater nutrients and pesticides in an agriculturally impacted Quaternary aquifer system. Science of the Total Environment, 2021, 753, 142010.	8.0	5
139	Uranium export from a sandy beach subterranean estuary in Australia. Estuarine, Coastal and Shelf Science, 2017, 198, 204-212.	2.1	4
140	Carbon dioxide dynamics in a tropical estuary over seasonal and rain-event time scales. Continental Shelf Research, 2020, 206, 104196.	1.8	4
141	The tidal freshwater river zone: Physical properties and biogeochemical contribution to estuarine hypoxia and acidification - The "hydrologic switch― Estuarine, Coastal and Shelf Science, 2022, 268, 107786.	2.1	3
142	The Role of Hydraulic Failure in a Massive Mangrove Die-Off Event. Frontiers in Plant Science, 2022, 13, 822136.	3.6	3
143	Mapping short-lived radium isotopes in estuarine residential canals (Gold Coast, Australia). Journal of Radioanalytical and Nuclear Chemistry, 2017, 313, 409-418.	1.5	2
144	Commentary: Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in Environmental Science, 2017, 5, .	3.3	2

#	Article	IF	CITATIONS
145	A Multifaceted Approach for Determining Sediment Provenance to Coastal Shipping Channels. Journal of Marine Science and Engineering, 2019, 7, 434.	2.6	1
146	Varying Biological Activity and Wind Stress Affect the DMS Response during the SAGE Iron Enrichment Experiment. Journal of Marine Science and Engineering, 2020, 8, 268.	2.6	1
147	The Interplay Between Dimethyl Sulfide (DMS) and Methane (CH4) in a Coral Reef Ecosystem. Frontiers in Marine Science, 0, 9, .	2.5	1
148	Title is missing!. , 2020, 15, e0242339.		0
149	Title is missing!. , 2020, 15, e0242339.		0
150	Title is missing!. , 2020, 15, e0242339.		0
151	Title is missing!. , 2020, 15, e0242339.		0