## Jose Alfonso Antonino Daviu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089986/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cutting Tool Wear Monitoring in CNC Machines Based in Spindle-Motor Stray Flux Signals. IEEE<br>Transactions on Industrial Informatics, 2022, 18, 3267-3275.                                                                                               | 7.2 | 20        |
| 2  | Tracking of High-Order Stray-Flux Harmonics Under Starting for the Detection of Winding<br>Asymmetries in Wound-Rotor Induction Motors. IEEE Transactions on Industrial Electronics, 2022, 69,<br>8463-8471.                                               | 5.2 | 6         |
| 3  | Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE<br>Transactions on Industrial Informatics, 2022, 18, 2895-2908.                                                                                                   | 7.2 | 47        |
| 4  | Advanced Fault Detection of Synchronous Generators Using Stray Magnetic Field. IEEE Transactions on Industrial Electronics, 2022, 69, 11675-11685.                                                                                                         | 5.2 | 16        |
| 5  | Smart Sensor for Fault Detection in Induction Motors Based on the Combined Analysis of Stray-Flux<br>and Current Signals: A Flexible, Robust Approach. IEEE Industry Applications Magazine, 2022, 28, 56-66.                                               | 0.3 | 19        |
| 6  | Determination of the Insulation Condition in Synchronous Generators: Industrial Methods and A Case Study. IEEE Industry Applications Magazine, 2022, 28, 67-77.                                                                                            | 0.3 | 5         |
| 7  | Virtual Reality Training Application for the Condition-Based Maintenance of Induction Motors.<br>Applied Sciences (Switzerland), 2022, 12, 414.                                                                                                            | 1.3 | 13        |
| 8  | Power Quality Monitoring Strategy Based on an Optimized Multi-Domain Feature Selection for the<br>Detection and Classification of Disturbances in Wind Generators. Electronics (Switzerland), 2022, 11,<br>287.                                            | 1.8 | 7         |
| 9  | Current and Stray Flux Combined Analysis for the Automatic Detection of Rotor Faults in Soft-Started Induction Motors. Energies, 2022, 15, 2511.                                                                                                           | 1.6 | 8         |
| 10 | Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review. Energies, 2022, 15, 1909.                                                                                                                                      | 1.6 | 12        |
| 11 | Electrical Testing for Detection and Classification of Open Damper Bar and Shorted Field Winding<br>Failures in Wound Field Synchronous Motors. IEEE Transactions on Industry Applications, 2022, 58,<br>4532-4541.                                        | 3.3 | 6         |
| 12 | Detection of Uniform Gearbox Wear in Induction Motors Based on the Analysis of Stray Flux Signals<br>Through Statistical Time-Domain Features and Dimensionality Reduction Techniques. IEEE Transactions<br>on Industry Applications, 2022, 58, 4648-4656. | 3.3 | 4         |
| 13 | Fault detection and classification in kinematic chains by means of PCA extraction-reduction of features from thermographic images. Measurement: Journal of the International Measurement Confederation, 2022, 197, 111340.                                 | 2.5 | 11        |
| 14 | Automatic Detection of Rotor Faults in Induction Motors by Convolutional Neural Networks applied to Stray Flux Signals. , 2021, , .                                                                                                                        |     | 7         |
| 15 | Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors. , 2021, , .                                                                                                                            |     | Ο         |
| 16 | Application of Transient Analysis to Detect Rotor and Stator Asymmetries in Wound Rotor Induction Motors: a Field Case. , 2021, , .                                                                                                                        |     | 1         |
| 17 | Power Quality Disturbance Tracking Based on a Proprietary FPGA Sensor with GPS Synchronization. Sensors, 2021, 21, 3910.                                                                                                                                   | 2.1 | 4         |
| 18 | The 22nd IEEE International Conference on Industrial Technology [Society News]. IEEE Industrial Electronics Magazine, 2021, 15, 76-80.                                                                                                                     | 2.3 | 0         |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gradual Wear Diagnosis of Outer-Race Rolling Bearing Faults through Artificial Intelligence Methods<br>and Stray Flux Signals. Electronics (Switzerland), 2021, 10, 1486.                                                                         | 1.8 | 11        |
| 20 | Two Current-Based Methods for the Detection of Bearing and Impeller Faults in Variable Speed Pumps.<br>Energies, 2021, 14, 4514.                                                                                                                  | 1.6 | 6         |
| 21 | Condition Monitoring Method for the Detection of Fault Graduality in Outer Race Bearing Based on<br>Vibration-Current Fusion, Statistical Features and Neural Network. Applied Sciences (Switzerland),<br>2021, 11, 8033.                         | 1.3 | 17        |
| 22 | Stray Flux Analysis for the Detection and Severity Categorization of Rotor Failures in Induction Machines Driven by Soft-Starters. Energies, 2021, 14, 5757.                                                                                      | 1.6 | 9         |
| 23 | Fault Detection of Circulation Pumps on the Basis of Motor Current Evaluation. IEEE Transactions on Industry Applications, 2021, 57, 4617-4624.                                                                                                   | 3.3 | 17        |
| 24 | Detection of Field Winding Faults in Synchronous Motors via Analysis of Transient Stray Fluxes and Currents. IEEE Transactions on Energy Conversion, 2021, 36, 2330-2338.                                                                         | 3.7 | 16        |
| 25 | Evaluation of the Damper Condition in Synchronous Motors Through the Analysis of the Transient<br>Stray Fluxes and Currents Considering the Effect of the Remanent Magnetism. IEEE Transactions on<br>Industry Applications, 2021, 57, 4665-4674. | 3.3 | 4         |
| 26 | Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction.<br>Electronics (Switzerland), 2021, 10, 168.                                                                                                       | 1.8 | 11        |
| 27 | Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors Based on<br>Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals. IEEE Transactions on Industry<br>Applications, 2021, 57, 5876-5886.                   | 3.3 | 13        |
| 28 | Multifractal Spectrum and Higher Order Statistics for the Detection of Field Winding Faults in Wound Field Synchronous Motors. , 2021, , .                                                                                                        |     | 2         |
| 29 | Investigation of Factors Affecting Partial Discharges on Epoxy Resin: Simulation, Experiments, and Reference on Electrical Machines. Energies, 2021, 14, 6621.                                                                                    | 1.6 | 5         |
| 30 | Envelope Spectral Kurtosis and SVD Analysis of Stray Flux Signals for the Diagnosis of Field Winding<br>Faults in Synchronous Motors. , 2021, , .                                                                                                 |     | 0         |
| 31 | Static, Dynamic and Mixed Eccentricity Faults Detection of Synchronous Generators based on Advanced Pattern Recognition Algorithm. , 2021, , .                                                                                                    |     | 3         |
| 32 | Online Condition Monitoring of Pumps based on Adapted Reference Frame Theory. , 2021, , .                                                                                                                                                         |     | 0         |
| 33 | Three-States Fault Detection in Rolling Bearings of Induction Motors through the analysis of Stray Flux signals using the DWT. , 2021, , .                                                                                                        |     | 3         |
| 34 | Inter-turn Short Circuit Fault Identification of Salient Pole Synchronous Generators by Descriptive Paradigm. , 2021, , .                                                                                                                         |     | 6         |
| 35 | Fault Detection in Soft-started Induction Motors using Convolutional Neural Network Enhanced by Data Augmentation Techniques. , 2021, , .                                                                                                         |     | 5         |
| 36 | Infrared thermography image processing for the electromechanical fault detection on the kinematic chain. , 2021, , .                                                                                                                              |     | 3         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Educational experiences on virtual teaching of electric motors condition monitoring courses. , 2021, , .                                                                                                         |     | 0         |
| 38 | Application of Stray Flux Analysis for Rotor Fault Detection in Soft-Started Induction Motors. , 2021, ,                                                                                                         |     | 1         |
| 39 | Transient Stray Flux Analysis Via MUSIC Methods for the Detection of Uniform Gearbox Teeth Wear<br>Faults. , 2021, , .                                                                                           |     | 2         |
| 40 | System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing. Sensors, 2021, 21, 8431.                                          | 2.1 | 15        |
| 41 | Detection of Winding Asymmetries in Wound-Rotor Induction Motors via Transient Analysis of the<br>External Magnetic Field. IEEE Transactions on Industrial Electronics, 2020, 67, 5050-5059.                     | 5.2 | 57        |
| 42 | Detection of Adjacent and Non-Adjacent Bar Breakages in Induction Motors Based on Power Spectral<br>Subtraction and Second Order Statistics of Sound Signals. Applied Sciences (Switzerland), 2020, 10,<br>6641. | 1.3 | 4         |
| 43 | Mechanical Pressure Characterization of CNT-Graphene Composite Material. Micromachines, 2020, 11, 1000.                                                                                                          | 1.4 | 11        |
| 44 | Electrical Monitoring under Transient Conditions: A New Paradigm in Electric Motors Predictive<br>Maintenance. Applied Sciences (Switzerland), 2020, 10, 6137.                                                   | 1.3 | 26        |
| 45 | Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach.<br>Energies, 2020, 13, 3930.                                                                                          | 1.6 | 57        |
| 46 | Detection of Rotor and Impeller Faults in Wet-rotor Pumps. , 2020, , .                                                                                                                                           |     | 3         |
| 47 | Fault Investigation of Circulation Pumps to Detect Impeller Clogging. Applied Sciences (Switzerland), 2020, 10, 7550.                                                                                            | 1.3 | 10        |
| 48 | Savior: A Reliable Fault Resilient Router Architecture for Network-on-Chip. Electronics (Switzerland), 2020, 9, 1783.                                                                                            | 1.8 | 5         |
| 49 | Electrical Monitoring of Damper Bar Condition in Salient-Pole Synchronous Motors Without Motor Disassembly. IEEE Transactions on Industry Applications, 2020, 56, 1423-1431.                                     | 3.3 | 16        |
| 50 | Fault Diagnosis of Rotating Machine. Applied Sciences (Switzerland), 2020, 10, 1961.                                                                                                                             | 1.3 | 5         |
| 51 | Smart-Sensor for the Automatic Detection of Electromechanical Faults in Induction Motors Based on the Transient Stray Flux Analysis. Sensors, 2020, 20, 1477.                                                    | 2.1 | 32        |
| 52 | Introduction to Special Issue on Symmetry in Mechanical Engineering. Symmetry, 2020, 12, 245.                                                                                                                    | 1.1 | 0         |
| 53 | Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods. IEEE Transactions on Industry Applications, 2020, , 1-1.                | 3.3 | 23        |
| 54 | Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE<br>Industrial Electronics Magazine, 2020, 14, 158-167.                                                        | 2.3 | 90        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Higher-Order Spectral Analysis of Stray Flux Signals for Faults Detection in Induction Motors.<br>Applied Mathematics and Nonlinear Sciences, 2020, 5, 1-14.                                                         | 0.9 | 44        |
| 56 | Triaxial Smart Sensor Based on the Advanced Analysis of Stray Flux and Currents for the Reliable<br>Fault Detection in Induction Motors. , 2020, , .                                                                 |     | 5         |
| 57 | STFT-based induction motor stray flux analysis for the monitoring of cutting tool wearing in CNC machines. , 2020, , .                                                                                               |     | 4         |
| 58 | Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. , 2020, , .                                                                            |     | 6         |
| 59 | Bispectrum Analysis of Stray Flux Signals for the Robust Detection of Winding Asymmetries in Wound<br>Rotor Induction Motors. , 2020, , .                                                                            |     | 5         |
| 60 | On the broken rotor bar diagnosis using time–frequency analysis: â€~ls one spectral representation<br>enough for the characterisation of monitored signals?'. IET Electric Power Applications, 2019, 13,<br>932-942. | 1.1 | 10        |
| 61 | Airgap Search Coil-Based Detection of Damper Bar Failures in Salient Pole Synchronous Motors. IEEE<br>Transactions on Industry Applications, 2019, 55, 3640-3648.                                                    | 3.3 | 34        |
| 62 | FEM approach for diagnosis of induction machines' nonâ€adjacent broken rotor bars by shortâ€ŧime<br>Fourier transform spectrogram. Journal of Engineering, 2019, 2019, 4566-4570.                                    | 0.6 | 13        |
| 63 | Electrical Monitoring of Damper Bar Condition in Salient Pole Synchronous Motors without Motor Disassembly. , 2019, , .                                                                                              |     | 8         |
| 64 | Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors. , 2019, , .                                                                   |     | 1         |
| 65 | Detection of Nonadjacent Rotor Faults in Induction Motors via Spectral Subtraction and<br>Autocorrelation of Stray Flux Signals. IEEE Transactions on Industry Applications, 2019, 55, 4585-4594.                    | 3.3 | 32        |
| 66 | Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux. Energies, 2019, 12, 1658.                                                                                                | 1.6 | 17        |
| 67 | Rotor Fault Detection in Induction Motors Based on Time-Frequency Analysis Using the Bispectrum and the Autocovariance of Stray Flux Signals. Energies, 2019, 12, 597.                                               | 1.6 | 19        |
| 68 | A New Approach for Broken Rotor Bar Detection in Induction Motors Using Frequency Extraction in Stray Flux Signals. IEEE Transactions on Industry Applications, 2019, 55, 3501-3511.                                 | 3.3 | 61        |
| 69 | Stray Flux Analysis for the Detection of Rotor Failures in Wound Rotor Induction Motors. , 2019, , .                                                                                                                 |     | 7         |
| 70 | Laboratory experiments for the evaluation of the efficiency of induction motors operating under different electrical and mechanical faults. , 2019, , .                                                              |     | 6         |
| 71 | Wavelet entropy to estimate the winding insulation healthiness in induction motors. , 2019, , .                                                                                                                      |     | 6         |
| 72 | Misalignment and rotor fault severity indicators based on the transient DWT analysis of stray flux                                                                                                                   |     | 4         |

signals. , 2019, , .

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Efficiency Assessment of Induction Motors Operating Under Different Faulty Conditions. IEEE<br>Transactions on Industrial Electronics, 2019, 66, 8072-8081.                                                                              | 5.2 | 30        |
| 74 | Study of thermal stresses developed during a fatigue test on an electrical motor rotor cage.<br>International Journal of Fatigue, 2019, 120, 56-64.                                                                                      | 2.8 | 6         |
| 75 | Recent Industrial Applications of Infrared Thermography: A Review. IEEE Transactions on Industrial Informatics, 2019, 15, 615-625.                                                                                                       | 7.2 | 112       |
| 76 | 2-D Magnetomechanical Transient Study of a Motor Suffering a Bar Breakage. IEEE Transactions on<br>Industry Applications, 2018, 54, 2097-2104.                                                                                           | 3.3 | 13        |
| 77 | Reliable Detection of Rotor Bars Breakage in Induction Motors via MUSIC and ZSC. IEEE Transactions on Industry Applications, 2018, 54, 1224-1234.                                                                                        | 3.3 | 55        |
| 78 | Advanced Analysis of Motor Currents for the Diagnosis of the Rotor Condition in Electric Motors<br>Operating in Mining Facilities. IEEE Transactions on Industry Applications, 2018, 54, 3934-3942.                                      | 3.3 | 49        |
| 79 | Detection of Induction Motor Coupling Unbalanced and Misalignment via Advanced Transient Current Signature Analysis. , 2018, , .                                                                                                         |     | 22        |
| 80 | Detection of Bar Breakages in Induction Motor via Spectral Subtraction of Stray Flux Signals. , 2018, , .                                                                                                                                |     | 4         |
| 81 | Thorough validation of a rotor fault diagnosis methodology in laboratory and field soft-started induction motors. Chinese Journal of Electrical Engineering, 2018, 4, 66-72.                                                             | 2.3 | 19        |
| 82 | Guest Editorial Special Section on Thermographic Analysis Technique for Monitoring and Diagnosis in<br>Industrial Machines and Industrial Facilities. IEEE Transactions on Industrial Informatics, 2018, 14,<br>5539-5543.               | 7.2 | 3         |
| 83 | Efficiency assessment of induction motors operating under different fault conditions. , 2018, , .                                                                                                                                        |     | 2         |
| 84 | Evaluation of the Detectability of Electromechanical Faults in Induction Motors Via Transient<br>Analysis of the Stray Flux. IEEE Transactions on Industry Applications, 2018, 54, 4324-4332.                                            | 3.3 | 75        |
| 85 | Time-frequency vibration analysis for the detection of motor damages caused by bearing currents.<br>Mechanical Systems and Signal Processing, 2017, 84, 747-762.                                                                         | 4.4 | 65        |
| 86 | Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case<br>Stories. IEEE Transactions on Industry Applications, 2017, 53, 1901-1908.                                                              | 3.3 | 134       |
| 87 | Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors. IEEE Transactions on Industry Applications, 2017, 53, 2049-2058.                                                                   | 3.3 | 57        |
| 88 | Introducing the Filtered Park's and Filtered Extended Park's Vector Approach to detect broken rotor<br>bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal<br>Processing, 2017, 93, 30-50. | 4.4 | 39        |
| 89 | Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis. IEEE Transactions on Industry Applications, 2017, 53, 2040-2048.                                                          | 3.3 | 41        |
| 90 | Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric<br>Machines and Drives Fault Diagnosis and Prognosis. IEEE Transactions on Industrial Informatics, 2017,<br>13, 1257-1260.               | 7.2 | 6         |

4

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Combined Model for Simulating the Effect of Transients on a Damaged Rotor Cage. IEEE Transactions on Industry Applications, 2017, 53, 3528-3537.                                                                       | 3.3 | 8         |
| 92  | The Use of a Multilabel Classification Framework for the Detection of Broken Bars and Mixed<br>Eccentricity Faults Based on the Start-Up Transient. IEEE Transactions on Industrial Informatics, 2017,<br>13, 625-634. | 7.2 | 38        |
| 93  | 2-D magnetomechanical transient simulation of a motor with a bar breakage. , 2017, , .                                                                                                                                 |     | 1         |
| 94  | Comparison of thermal stresses developed during transients on a damaged rotor cage. , 2017, , .                                                                                                                        |     | 0         |
| 95  | Evaluation of the detectability of rotor faults and eccentricities in induction motors via transient analysis of the stray flux. , 2017, , .                                                                           |     | 6         |
| 96  | Design of innovative laboratory sessions for electric motors predictive maintenance teaching. , 2017, ,                                                                                                                |     | 5         |
| 97  | Detection of rotor faults via transient analysis of the external magnetic field. , 2017, , .                                                                                                                           |     | 14        |
| 98  | Diagnosis of the rotor condition in electric motors operating in mining facilities through the analysis of motor currents. , 2017, , .                                                                                 |     | 5         |
| 99  | 3-D simulation of a rotor suffering a bar breakage. , 2017, , .                                                                                                                                                        |     | 0         |
| 100 | Processing tool for failure diagnosis based on isothermal representation for infrared-based fault detection in induction motors under transient state. , 2017, , .                                                     |     | 2         |
| 101 | Influence of blade pass frequency vibrations on MCSA-based rotor fault detection of induction motors. , 2016, , .                                                                                                      |     | 7         |
| 102 | A multi-label classification approach for the detection of broken bars and mixed eccentricity faults using the start-up transient. , 2016, , .                                                                         |     | 5         |
| 103 | Robust detection of rotor winding asymmetries in wound rotor induction motors via integral current analysis. , 2016, , .                                                                                               |     | 1         |
| 104 | Combined model for simulating the effect of a heavy transient on a damaged rotor cage. , 2016, , .                                                                                                                     |     | 4         |
| 105 | Self-adjustment methodology of a thermal camera for detecting faults in industrial machinery. , 2016,                                                                                                                  |     | 11        |
| 106 | Reporting false indications of startup analysis when diagnosing damper damages in synchronous motors. , 2016, , .                                                                                                      |     | 9         |
| 107 | Start-up analysis methods for the diagnosis of rotor asymmetries in induction motors-seeing is believing. , 2016, , .                                                                                                  |     | 8         |
|     |                                                                                                                                                                                                                        |     |           |

Reliable detection of broken rotor bars in induction motors via MUSIC and ZSC methods. , 2016, , .

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Case stories of induction motors fault diagnosis based on current analysis. , 2016, , .                                                                                             |     | 12        |
| 110 | Advanced Rotor Fault Diagnosis for Medium-Voltage Induction Motors Via Continuous Transforms.<br>IEEE Transactions on Industry Applications, 2016, 52, 4503-4509.                   | 3.3 | 29        |
| 111 | Pursuing optimal electric machines transient diagnosis: The adaptive slope transform. Mechanical<br>Systems and Signal Processing, 2016, 80, 553-569.                               | 4.4 | 28        |
| 112 | Influence of the Start-up System in the Diagnosis of Faults in the Rotor of Induction Motors using the<br>Discrete Wavelet Transform. Procedia Computer Science, 2016, 83, 807-815. | 1.2 | 6         |
| 113 | Reliable detection of induction motor rotor faults under the influence of rotor core magnetic anisotropy. , 2015, , .                                                               |     | 11        |
| 114 | Comparative influence of adjacent and non-adjacent broken rotor bars on the induction motor diagnosis through MCSA and ZSC methods. , 2015, , .                                     |     | 24        |
| 115 | Education in electric and electronic engineering via students involvement in innovative projects. , 2015, , .                                                                       |     | 2         |
| 116 | Current variation in a rotor bar during transients due to a hot spot. , 2015, , .                                                                                                   |     | 1         |
| 117 | Diagnosis of Induction Motors Under Varying Speed Operation by Principal Slot Harmonic Tracking.<br>IEEE Transactions on Industry Applications, 2015, 51, 3591-3599.                | 3.3 | 37        |
| 118 | Automatizing the detection of rotor failures in induction motors operated via soft-starters. , 2015, , .                                                                            |     | 2         |
| 119 | Comparative Experimental Investigation of the Broken Bar Fault Detectability in Induction Motors.<br>IEEE Transactions on Industry Applications, 2015, , 1-1.                       | 3.3 | 24        |
| 120 | Comparative experimental investigation of broken bar fault detectability in induction motors. , 2015, , .                                                                           |     | 4         |
| 121 | Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial<br>Electronics, 2015, 62, 1814-1825.                                              | 5.2 | 48        |
| 122 | Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives. IEEE<br>Transactions on Industrial Electronics, 2015, 62, 1738-1745.                          | 5.2 | 85        |
| 123 | Combination of Noninvasive Approaches for General Assessment of Induction Motors. IEEE<br>Transactions on Industry Applications, 2015, 51, 2172-2180.                               | 3.3 | 63        |
| 124 | Outer race bearing fault detection in induction machines using stator current signals. , 2015, , .                                                                                  |     | 18        |
| 125 | A study of the harmonics introduced by soft-starters in the induction motor starting current using continuous time-frequency transforms. , 2015, , .                                |     | 6         |
| 126 | A Symbolic Representation Approach for the Diagnosis of Broken Rotor Bars in Induction Motors. IEEE<br>Transactions on Industrial Informatics, 2015, 11, 1028-1037.                 | 7.2 | 51        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Symbolic time series analysis of the soft starting transient in induction machines. , 2015, , .                                                                                                                                                    |     | 1         |
| 128 | Transient-Based Rotor Cage Assessment in Induction Motors Operating With Soft Starters. IEEE Transactions on Industry Applications, 2015, 51, 3734-3742.                                                                                           | 3.3 | 28        |
| 129 | Automation of the startup transient analysis of induction motors using a predictive stage. , 2015, , .                                                                                                                                             |     | 2         |
| 130 | Comparison of different wavelet families for broken bar detection in induction motors. , 2015, , .                                                                                                                                                 |     | 14        |
| 131 | Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault<br>Detection: State of the Art. IEEE Transactions on Industrial Electronics, 2015, 62, 1746-1759.                                                       | 5.2 | 438       |
| 132 | Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools.<br>IEEE Transactions on Industrial Electronics, 2015, 62, 1791-1802.                                                                              | 5.2 | 148       |
| 133 | An automated thermographic image segmentation method for induction motor fault diagnosis. , 2014, , $\cdot$                                                                                                                                        |     | 28        |
| 134 | Identification of the broken bar fault in induction motors with rotor air ducts through the torque spectrum. , 2014, , .                                                                                                                           |     | 1         |
| 135 | Automatizing the broken bar detection process via short time Fourier transform and two-dimensional piecewise aggregate approximation representation. , 2014, , .                                                                                   |     | 9         |
| 136 | Advanced rotor assessment of motors operating under variable load conditions in mining facilities. , 2014, , .                                                                                                                                     |     | 18        |
| 137 | Evaluation of startup-based rotor fault severity indicators under different starting methods. , 2014, , .                                                                                                                                          |     | 1         |
| 138 | Transient diagnosis of induction generators via atom-based time-frequency transforms. , 2014, , .                                                                                                                                                  |     | 5         |
| 139 | Transient-based rotor cage assessment in induction motors operating with soft-starters. , 2014, , .                                                                                                                                                |     | 6         |
| 140 | Teaching electrical and electronic engineering to multi-cultural groups. , 2014, , .                                                                                                                                                               |     | 1         |
| 141 | Designing Collaborative Working Laboratory Sessions for Induction Machine Fault Diagnosis<br>Learning. International Journal of Electrical Engineering and Education, 2014, 51, 68-81.                                                             | 0.4 | 2         |
| 142 | Induction Motor Diagnosis by Advanced Notch FIR Filters and the Wigner–Ville Distribution. IEEE Transactions on Industrial Electronics, 2014, 61, 4217-4227.                                                                                       | 5.2 | 112       |
| 143 | Reliable detection of rotor bar failures in induction motors operating in petrochemical plants. , 2014, , .                                                                                                                                        |     | 28        |
| 144 | Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup<br>Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines. IEEE Transactions on<br>Industrial Electronics, 2014, 61, 4937-4946. | 5.2 | 41        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Stator current demodulation for induction machine rotor faults diagnosis. , 2014, , .                                                                                                                           |     | 19        |
| 146 | Reliable Detection of Induction Motor Rotor Faults Under the Rotor Axial Air Duct Influence. IEEE<br>Transactions on Industry Applications, 2014, 50, 2493-2502.                                                | 3.3 | 85        |
| 147 | Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents. Mechanical Systems and Signal Processing, 2014, 48, 423-435.                       | 4.4 | 35        |
| 148 | Particle Filter-Based Estimation of Instantaneous Frequency for the Diagnosis of Electrical<br>Asymmetries in Induction Machines. IEEE Transactions on Instrumentation and Measurement, 2014, 63,<br>2454-2463. | 2.4 | 33        |
| 149 | Vibration Transient Detection of Broken Rotor Bars by PSH Sidebands. IEEE Transactions on Industry<br>Applications, 2013, 49, 2576-2582.                                                                        | 3.3 | 58        |
| 150 | Bar breakage mechanism and prognosis in an induction motor. , 2013, , .                                                                                                                                         |     | 6         |
| 151 | Transient-based analysis for the detection of broken damper bars in synchronous motors. Mechanical<br>Systems and Signal Processing, 2013, 34, 367-377.                                                         | 4.4 | 8         |
| 152 | Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors. IEEE Transactions on Industrial Informatics, 2013, 9, 100-108.                               | 7.2 | 65        |
| 153 | Use of the infrared data for heating curve computation in induction motors: Application to fault diagnosis. Engineering Failure Analysis, 2013, 35, 178-192.                                                    | 1.8 | 43        |
| 154 | Principal Component Analysis of the start-up transient and Hidden Markov Modeling for broken rotor<br>bar fault diagnosis in asynchronous machines. Expert Systems With Applications, 2013, 40, 7024-7033.      | 4.4 | 56        |
| 155 | Reliable detection of induction motor rotor faults under the rotor axial air duct influence. , 2013, , .                                                                                                        |     | 7         |
| 156 | Application of the Teager–Kaiser Energy Operator to the Fault Diagnosis of Induction Motors. IEEE<br>Transactions on Energy Conversion, 2013, 28, 1036-1044.                                                    | 3.7 | 100       |
| 157 | An intelligent icons approach for rotor bar fault detection. , 2013, , .                                                                                                                                        |     | 14        |
| 158 | Recent Educational Experiences in Electric Machine Maintenance Teaching. International Journal of<br>Engineering Pedagogy, 2013, 3, 21.                                                                         | 0.7 | 0         |
| 159 | Detection of broken rotor bars in induction machines: An approach using wavelet packets in MCSA. , 2012, , .                                                                                                    |     | 0         |
| 160 | Detection of Broken Outer-Cage Bars for Double-Cage Induction Motors Under the Startup Transient.<br>IEEE Transactions on Industry Applications, 2012, 48, 1539-1548.                                           | 3.3 | 103       |
| 161 | Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electric Power Systems Research, 2012, 91, 28-36.                            | 2.1 | 62        |
| 162 | Toward Condition Monitoring of Damper Windings in Synchronous Motors via EMD Analysis. IEEE<br>Transactions on Energy Conversion, 2012, 27, 432-439.                                                            | 3.7 | 37        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient Regime. IEEE<br>Transactions on Instrumentation and Measurement, 2012, 61, 1583-1596.                             | 2.4 | 77        |
| 164 | Detection of broken outer cage bars for double cage induction motors under the startup transient. , 2011, , .                                                                                        |     | 10        |
| 165 | An EMD-based invariant feature extraction algorithm for rotor bar condition monitoring. , 2011, , .                                                                                                  |     | 17        |
| 166 | Diagnosis of Induction Motor Faults in Time-Varying Conditions Using the Polynomial-Phase Transform of the Current. IEEE Transactions on Industrial Electronics, 2011, 58, 1428-1439.                | 5.2 | 43        |
| 167 | Induction Motor Diagnosis Based on a Transient Current Analytic Wavelet Transform via Frequency<br>B-Splines. IEEE Transactions on Industrial Electronics, 2011, 58, 1530-1544.                      | 5.2 | 122       |
| 168 | Fault Diagnosis in Induction Motors Using the Hilbert-Huang Transform. Nuclear Technology, 2011, 173, 26-34.                                                                                         | 0.7 | 10        |
| 169 | Transient tracking of low and high-order eccentricity-related components in induction motors via<br>TFD tools. Mechanical Systems and Signal Processing, 2011, 25, 667-679.                          | 4.4 | 25        |
| 170 | Diagnosis of Induction Motor Faults in the Fractional Fourier Domain. IEEE Transactions on<br>Instrumentation and Measurement, 2010, 59, 2065-2075.                                                  | 2.4 | 89        |
| 171 | Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of<br>Rotor Faults in Induction Motors. IEEE Transactions on Energy Conversion, 2010, 25, 80-89.     | 3.7 | 80        |
| 172 | Transient detection of eccentricity-related components in induction motors through the<br>Hilbert–Huang Transform. Energy Conversion and Management, 2009, 50, 1810-1820.                            | 4.4 | 41        |
| 173 | Diagnosis of rotor asymmetries in induction motors based on the transient extraction of fault components using filtering techniques. Electric Power Systems Research, 2009, 79, 1181-1191.           | 2.1 | 21        |
| 174 | Detection of combined faults in induction machines with stator parallel branches through the DWT of the startup current. Mechanical Systems and Signal Processing, 2009, 23, 2336-2351.              | 4.4 | 65        |
| 175 | A Critical Comparison Between DWT and Hilbert–Huang-Based Methods for the Diagnosis of Rotor<br>Bar Failures in Induction Machines. IEEE Transactions on Industry Applications, 2009, 45, 1794-1803. | 3.3 | 113       |
| 176 | Instantaneous Frequency of the Left Sideband Harmonic During the Start-Up Transient: A New Method<br>for Diagnosis of Broken Bars. IEEE Transactions on Industrial Electronics, 2009, 56, 4557-4570. | 5.2 | 91        |
| 177 | Feature Extraction for the Prognosis of Electromechanical Faults in Electrical Machines through the DWT. International Journal of Computational Intelligence Systems, 2009, 2, 158.                  | 1.6 | 11        |
| 178 | Air-gap force distribution and vibration pattern of Induction motors under dynamic eccentricity.<br>Electrical Engineering, 2008, 90, 209-218.                                                       | 1.2 | 50        |
| 179 | A General Approach for the Transient Detection of Slip-Dependent Fault Components Based on the Discrete Wavelet Transform. IEEE Transactions on Industrial Electronics, 2008, 55, 4167-4180.         | 5.2 | 234       |
| 180 | The Use of the Wavelet Approximation Signal as a Tool for the Diagnosis of Rotor Bar Failures. IEEE<br>Transactions on Industry Applications, 2008, 44, 716-726.                                     | 3.3 | 123       |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Experimental study of the evolution of a bar breakage process in a commercial induction machine. , 2008, , .                                                                                 |     | 6         |
| 182 | Case Histories in large motors: Diagnosis of electromechanical faults through extraction of characteristic components during the startup. , 2007, , .                                        |     | 1         |
| 183 | DWT analysis of numerical and experimental data for the diagnosis of dynamic eccentricities in induction motors. Mechanical Systems and Signal Processing, 2007, 21, 2575-2589.              | 4.4 | 70        |
| 184 | Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in in industrial induction machines. IEEE Transactions on Industry Applications, 2006, 42, 990-996. | 3.3 | 262       |
| 185 | Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines. Applied and Computational Harmonic Analysis, 2006, 21, 268-279. | 1.1 | 96        |