
Dario Leister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redesigning the photosynthetic light reactions to enhance photosynthesis – the <i>PhotoRedesign</i> consortium. Plant Journal, 2022, 109, 23-34.	2.8	21
2	Dynamic light―and acetateâ€dependent regulation of the proteome and lysine acetylome of <i>Chlamydomonas</i> . Plant Journal, 2022, 109, 261-277.	2.8	10
3	Chloroplasts are key players to cope with light and temperature stress. Trends in Plant Science, 2022, 27, 577-587.	4.3	37
4	Loss of a pyridoxal-phosphate phosphatase rescues Arabidopsis lacking an endoplasmic reticulum ATP carrier. Plant Physiology, 2022, 189, 49-65.	2.3	4
5	The RNAâ€binding protein RBP45D of Arabidopsis promotes transgene silencing and flowering time. Plant Journal, 2022, 109, 1397-1415.	2.8	13
6	An ancient function of PGR5 in iron delivery?. Trends in Plant Science, 2022, 27, 971-980.	4.3	5
7	CIA2 and CIA2â€LIKE are required for optimal photosynthesis and stress responses in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 105, 619-638.	2.8	20
8	Modulating the activities of chloroplasts and mitochondria promotes adenosine triphosphate production and plant growth. Quantitative Plant Biology, 2021, 2, .	0.8	8
9	Arabidopsis Mitochondrial Transcription Termination Factor mTERF2 Promotes Splicing of Group IIB Introns. Cells, 2021, 10, 315.	1.8	15
10	Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region. Cells, 2021, 10, 322.	1.8	9
11	Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis. Plant Journal, 2021, 106, 766-784.	2.8	4
12	The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2021, 72, 4904-4914.	2.4	4
13	Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants, 2021, 7, 681-695.	4.7	24
14	NTRC Effects on Non-Photochemical Quenching Depends on PGR5. Antioxidants, 2021, 10, 900.	2.2	10
15	PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nature Communications, 2021, 12, 3941.	5.8	31
16	Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. Frontiers in Plant Science, 2021, 12, 697848.	1.7	5
17	Introduction of the Carotenoid Biosynthesis α-Branch Into Synechocystis sp. PCC 6803 for Lutein Production. Frontiers in Plant Science, 2021, 12, 699424.	1.7	9
18	Acclimation in plants – the Green Hub consortium. Plant Journal, 2021, 106, 23-40.	2.8	44

#	Article	IF	CITATIONS
19	Lack of FIBRILLIN6 in <i>Arabidopsis thaliana</i> affects light acclimation and sulfate metabolism. New Phytologist, 2020, 225, 1715-1731.	3.5	15
20	Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development. Plant Journal, 2020, 101, 156-170.	2.8	21
21	Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nature Plants, 2020, 6, 9-12.	4.7	63
22	Alternative electron pathways in photosynthesis: strength in numbers. New Phytologist, 2020, 228, 1166-1168.	3.5	6
23	Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. IScience, 2020, 23, 101331.	1.9	48
24	The Chloroplast RNA Binding Protein CP31A Has a Preference for mRNAs Encoding the Subunits of the Chloroplast NAD(P)H Dehydrogenase Complex and Is Required for Their Accumulation. International Journal of Molecular Sciences, 2020, 21, 5633.	1.8	9
25	Chloroplast development and genomes uncoupled signaling are independent of the RNA-directed DNA methylation pathway. Scientific Reports, 2020, 10, 15412.	1.6	6
26	The Arabidopsis Protein CGL20 Is Required for Plastid 50S Ribosome Biogenesis. Plant Physiology, 2020, 182, 1222-1238.	2.3	14
27	Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15354-15362.	3.3	57
28	The <i>Arabidopsis</i> SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6918-6927.	3.3	41
29	Homologous Proteins of the Manganese Transporter PAM71 Are Localized in the Golgi Apparatus and Endoplasmic Reticulum. Plants, 2020, 9, 239.	1.6	14
30	Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. Plant Journal, 2020, 103, 2119-2138.	2.8	12
31	VENOSA4, a Human dNTPase SAMHD1 Homolog, Contributes to Chloroplast Development and Abiotic Stress Tolerance. Plant Physiology, 2020, 182, 721-729.	2.3	11
32	Extending the Repertoire of mTERF Proteins withÂFunctions in Organellar Gene Expression. Molecular Plant, 2020, 13, 817-819.	3.9	8
33	Genetic Engineering, Synthetic Biology and the Light Reactions of Photosynthesis. Plant Physiology, 2019, 179, 778-793.	2.3	55
34	Thawing out frozen metabolic accidents. BMC Biology, 2019, 17, 8.	1.7	8
35	Relationship of <scp>GUN</scp> 1 to <scp>FUG</scp> 1 in chloroplast protein homeostasis. Plant Journal, 2019, 99, 521-535.	2.8	35
36	Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance. Plant Physiology, 2019, 180, 323-341.	2.3	30

#	Article	IF	CITATIONS
37	The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24900-24906.	3.3	48
38	Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow. Nature Communications, 2019, 10, 5299.	5.8	33
39	PUMPKIN, the Sole Plastid UMP Kinase, Associates with Group II Introns and Alters Their Metabolism. Plant Physiology, 2019, 179, 248-264.	2.3	23
40	Plastid-to-Nucleus Retrograde Signalling during Chloroplast Biogenesis Does Not Require ABI4. Plant Physiology, 2019, 179, 18-23.	2.3	52
41	Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxidants and Redox Signaling, 2019, 30, 1206-1219.	2.5	51
42	Fine-Tuning of Photosynthesis Requires CURVATURE THYLAKOID1-Mediated Thylakoid Plasticity. Plant Physiology, 2018, 176, 2351-2364.	2.3	46
43	Novel <scp>DNAJ</scp> â€related proteins in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 480-490.	3.5	70
44	Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes. Plant Physiology, 2018, 176, 2557-2569.	2.3	33
45	The DEAD-box RNA Helicase RH50 Is a 23S-4.5S rRNA Maturation Factor that Functionally Overlaps with the Plastid Signaling Factor GUN1. Plant Physiology, 2018, 176, 634-648.	2.3	49
46	The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is Essential for Manganese Homeostasis in Arabidopsis. Molecular Plant, 2018, 11, 955-969.	3.9	83
47	Experimental evolution in photoautotrophic microorganisms as a means of enhancing chloroplast functions. Essays in Biochemistry, 2018, 62, 77-84.	2.1	11
48	Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. Frontiers in Plant Science, 2018, 9, 55.	1.7	18
49	Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei. Frontiers in Plant Science, 2018, 9, 461.	1.7	18
50	CHLOROPLAST RIBOSOME ASSOCIATED Supports Translation under Stress and Interacts with the Ribosomal 30S Subunit. Plant Physiology, 2018, 177, 1539-1554.	2.3	29
51	Plants contain small families of UPF0016 proteins including the PHOTOSYNTHESIS AFFECTED MUTANT71 transporter. Plant Signaling and Behavior, 2017, 12, e1278101.	1.2	13
52	SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation inÂBoth Lotus japonicus and Arabidopsis thaliana. Molecular Plant, 2017, 10, 721-734.	3.9	37
53	The transporter Syn <scp>PAM</scp> 71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in <i>Synechocystis </i> <scp>PCC</scp> 6803. New Phytologist, 2017, 215, 256-268.	3.5	47
54	Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in <i>Arabidopsis</i> . Molecular Systems Biology, 2017, 13, 949.	3.2	141

#	Article	IF	CITATIONS
55	E3 ligase SAUL1 serves as a positive regulator of PAMPâ€triggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytologist, 2017, 215, 1516-1532.	3.5	69
56	PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. Plant Journal, 2017, 92, 400-413.	2.8	26
57	Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160380.	1.8	26
58	Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions. Biotechnology Reports (Amsterdam, Netherlands), 2017, 16, 26-31.	2.1	5
59	Organellar Gene Expression and Acclimation of Plants to Environmental Stress. Frontiers in Plant Science, 2017, 08, 387.	1.7	69
60	Arabidopsis thaliana mTERF10 and mTERF11, but Not mTERF12, Are Involved in the Response to Salt Stress. Frontiers in Plant Science, 2017, 8, 1213.	1.7	29
61	Editorial: Plastid Proteostasis: Relevance of Transcription, Translation, and Post-translational Modifications. Frontiers in Plant Science, 2017, 8, 1759.	1.7	1
62	Editorial: Relevance of Translational Regulation on Plant Growth and Environmental Responses. Frontiers in Plant Science, 2017, 8, 2170.	1.7	3
63	Recent advances in understanding photosynthesis. F1000Research, 2016, 5, 2890.	0.8	12
64	Photosystem II Assembly from Scratch. Frontiers in Plant Science, 2016, 6, 1234.	1.7	2
65	Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies <scp>GLK</scp> overexpressors as <i>gun</i> mutants. Physiologia Plantarum, 2016, 157, 297-309.	2.6	48
66	The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis. Plant Cell, 2016, 28, tpc.00812.2015.	3.1	94
67	FtsH facilitates proper biosynthesis of photosystem I in Arabidopsis thaliana. Plant Physiology, 2016, 171, pp.00200.2016.	2.3	28
68	Chloroplast retrograde signal regulates flowering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10708-10713.	3.3	51
69	Thylakoid Membrane Architecture in <i>Synechocystis</i> Depends on CurT, a Homolog of the Granal CURVATURE THYLAKOID1 Proteins. Plant Cell, 2016, 28, 2238-2260.	3.1	51
70	Nanostructured Antimonyâ€Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials, 2016, 26, 6682-6692.	7.8	28
71	Convergence of light and chloroplast signals for de-etiolation through ABI4–HY5 and COP1. Nature Plants, 2016, 2, 16066.	4.7	81
72	Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nature Communications, 2016, 7, 12173.	5.8	70

#	Article	IF	CITATIONS
73	Photosynthesis: Complex flexibilities. Nature Plants, 2016, 2, 16135.	4.7	О
74	The antimycin A-sensitive pathway of cyclic electron flow: from 1963 to 2015. Photosynthesis Research, 2016, 129, 231-238.	1.6	43
75	PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana. Molecular Plant, 2016, 9, 271-288.	3.9	119
76	The Arabidopsis Protein CGLD11 Is Required for Chloroplast ATP Synthase Accumulation. Molecular Plant, 2016, 9, 885-899.	3.9	17
77	Functional relationship between mTERF4 and GUN1 in retrograde signaling. Journal of Experimental Botany, 2016, 67, 3909-3924.	2.4	31
78	Retrograde signaling: Organelles go networking. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1313-1325.	0.5	191
79	GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis. Plant Physiology, 2016, 170, 1817-1830.	2.3	100
80	Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Research, 2016, 5, 330.	0.8	13
81	Emerging functions of mammalian and plant mTERFs. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 786-797.	0.5	59
82	Assembly of F1F0-ATP synthases. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 849-860.	0.5	82
83	Photosynthetic lesions can trigger accelerated senescence in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2015, 66, 6891-6903.	2.4	33
84	A Member of the Arabidopsis Mitochondrial Transcription Termination Factor Family Is Required for Maturation of Chloroplast Transfer RNA ^{lle} (GAU). Plant Physiology, 2015, 169, 627-646.	2.3	62
85	Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Research, 2015, 24, 267-277.	1.3	19
86	Functional characterization of the two ferrochelatases in <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 280-298.	2.8	67
87	Chloroplast evolution, structure and functions. F1000prime Reports, 2014, 6, 40.	5.9	106
88	Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis. Frontiers in Bioengineering and Biotechnology, 2014, 2, 7.	2.0	24
89	Redox Regulation of Arabidopsis Mitochondrial Citrate Synthase. Molecular Plant, 2014, 7, 156-169.	3.9	89
90	The Arabidopsis Class II Sirtuin Is a Lysine Deacetylase and Interacts with Mitochondrial Energy Metabolism Â. Plant Physiology, 2014, 164, 1401-1414.	2.3	96

#	Article	IF	CITATIONS
91	Complex(iti)es of the ubiquitous RNA-binding CSP41 proteins. Frontiers in Plant Science, 2014, 5, 255.	1.7	11
92	A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microbial Cell Factories, 2014, 13, 4.	1.9	32
93	Meta-Analysis of Retrograde Signaling in Arabidopsis thaliana Reveals a Core Module of Genes Embedded in Complex Cellular Signaling Networks. Molecular Plant, 2014, 7, 1167-1190.	3.9	69
94	The Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the Assembly of the Membranous Part of the Chloroplast ATP Synthase. Plant Physiology, 2014, 165, 207-226.	2.3	35
95	The Arabidopsis Tellurite resistance C protein together with <scp>ALB</scp> 3 is involved in photosystemÂ <scp>II</scp> protein synthesis. Plant Journal, 2014, 78, 344-356.	2.8	37
96	At <scp>SIA</scp> 1 <scp>AND</scp> At <scp>OSA</scp> 1: two Abc1 proteins involved in oxidative stress responses and iron distribution within chloroplasts. New Phytologist, 2014, 201, 452-465.	3.5	28
97	Intracellular Communication. Molecular Plant, 2014, 7, 1071-1074.	3.9	10
98	Structure and dynamics of thylakoids in land plants. Journal of Experimental Botany, 2014, 65, 1955-1972.	2.4	251
99	Identification of Target Genes and Transcription Factors Implicated in Translation-Dependent Retrograde Signaling in Arabidopsis. Molecular Plant, 2014, 7, 1228-1247.	3.9	24
100	PGRL1 Is the Elusive Ferredoxin-Plastoquinone Reductase in Photosynthetic Cyclic Electron Flow. Molecular Cell, 2013, 49, 511-523.	4.5	288
101	Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. Planta, 2013, 237, 541-558.	1.6	39
102	Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta, 2013, 237, 637-651.	1.6	33
103	<scp>GABI</scp> â€ <scp>DUPLO</scp> : a collection of double mutants to overcome genetic redundancy in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 75, 157-171.	2.8	48
104	Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygenâ€evolving complex show altered <scp>PSII</scp> superâ€complex organization and shortâ€ŧerm adaptive mechanisms. Plant Journal, 2013, 75, 671-684.	2.8	99
105	The PHOTOSYNTHESIS AFFECTED MUTANT68–LIKE Protein Evolved from a PSII Assembly Factor to Mediate Assembly of the Chloroplast NAD(P)H Dehydrogenase Complex in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3926-3943.	3.1	45
106	Transcriptomic Analysis of the Role of Carboxylic Acids in Metabolite Signaling in Arabidopsis Leaves Â. Plant Physiology, 2013, 162, 239-253.	2.3	90
107	Retrograde signals galore. Frontiers in Plant Science, 2013, 4, 45.	1.7	18
108	Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature. Plant Cell, 2013, 25, 2661-2678.	3.1	226

#	Article	IF	CITATIONS
109	The major thylakoid protein kinases STN7 and STN8 revisited: effects of altered STN8 levels and regulatory specificities of the STN kinases. Frontiers in Plant Science, 2013, 4, 417.	1.7	56
110	Photosynthesis research protocols. Annals of Botany, 2013, 112, vi-vii.	1.4	1
111	Complexities and protein complexes in the antimycin A-sensitive pathway of cyclic electron flow in plants. Frontiers in Plant Science, 2013, 4, 161.	1.7	49
112	How Can the Light Reactions of Photosynthesis be Improved in Plants?. Frontiers in Plant Science, 2012, 3, 199.	1.7	22
113	Retrograde signaling in plants: from simple to complex scenarios. Frontiers in Plant Science, 2012, 3, 135.	1.7	88
114	Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signaling in the prors1-1 mutant. Frontiers in Plant Science, 2012, 3, 282.	1.7	14
115	Regulation of planar growth by the <i>Arabidopsis</i> AGC protein kinase UNICORN. Proceedings of the United States of America, 2012, 109, 15060-15065.	3.3	34
116	Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. Journal of Experimental Botany, 2012, 63, 1251-1270.	2.4	49
117	Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. Plant Journal, 2012, 72, 922-934.	2.8	89
118	Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana. BMC Plant Biology, 2012, 12, 8.	1.6	43
119	Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Current Genomics, 2011, 12, 1-14.	0.7	38
120	Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: The roles of STN7, STN8 and TAP38. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 887-896.	0.5	136
121	Intracompartmental and Intercompartmental Transcriptional Networks Coordinate the Expression of Genes for Organellar Functions Â. Plant Physiology, 2011, 157, 386-404.	2.3	40
122	Role of Intercompartmental DNA Transfer in Producing Genetic Diversity. International Review of Cell and Molecular Biology, 2011, 291, 73-114.	1.6	31
123	Update on Chloroplast Research: New Tools, New Topics, and New Trends. Molecular Plant, 2011, 4, 1-16.	3.9	50
124	Use of Transcriptomics to Analyze Chloroplast Processes in Arabidopsis. Methods in Molecular Biology, 2011, 775, 117-134.	0.4	1
125	Inâ€depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUNâ€ŧype of plastid signalling. Physiologia Plantarum, 2010, 138, 503-519.	2.6	80
126	The <i>Arabidopsis</i> Thylakoid Protein PAM68 Is Required for Efficient D1 Biogenesis and Photosystem II Assembly. Plant Cell, 2010, 22, 3439-3460.	3.1	116

#	Article	IF	CITATIONS
127	Redox Regulation of the NPR1-TGA1 System of <i>Arabidopsis thaliana</i> by Nitric Oxide Â. Plant Cell, 2010, 22, 2894-2907.	3.1	361
128	Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow. PLoS Biology, 2010, 8, e1000288.	2.6	269
129	Optimizing photosynthesis under fluctuating light. Plant Signaling and Behavior, 2010, 5, 21-25.	1.2	42
130	Chloroplast Proteins without Cleavable Transit Peptides: Rare Exceptions or a Major Constituent of the Chloroplast Proteome?. Molecular Plant, 2009, 2, 1325-1335.	3.9	70
131	Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6002-6007.	3.3	109
132	Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2715-2732.	3.1	176
133	<i>Arabidopsis</i> STN7 Kinase Provides a Link between Short- and Long-Term Photosynthetic Acclimation. Plant Cell, 2009, 21, 2402-2423.	3.1	233
134	Plastid signalling to the nucleus: messengers still lost in the mists?. Trends in Genetics, 2009, 25, 185-192.	2.9	157
135	Phosphorylation site mapping of soluble proteins: bioinformatical filtering reveals potential plastidic phosphoproteins in Arabidopsis thaliana. Planta, 2009, 229, 1123-1134.	1.6	46
136	Deletion of an organellar peptidasome PreP affects early development in Arabidopsis thaliana. Plant Molecular Biology, 2009, 71, 497-508.	2.0	33
137	DNA Transfer from Organelles to the Nucleus: The Idiosyncratic Genetics of Endosymbiosis. Annual Review of Plant Biology, 2009, 60, 115-138.	8.6	331
138	Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State. Molecular Plant, 2009, 2, 236-248.	3.9	92
139	Impaired photosystem I oxidation induces STN7-dependent phosphorylation of the light-harvesting complex I protein Lhca4 in Arabidopsis thaliana. Planta, 2008, 227, 717-22.	1.6	18
140	Towards a comprehensive catalog of chloroplast proteins and their interactions. Cell Research, 2008, 18, 1081-1083.	5.7	17
141	Competition between linear and cyclic electron flow in plants deficient in Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1173-1183.	0.5	21
142	A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear andÂCyclic Electron Flow in Arabidopsis. Cell, 2008, 132, 273-285.	13.5	496
143	A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana. Current Genomics, 2008, 9, 184-190.	0.7	47
144	Evolutionary tinkering: birth of a novel chloroplast protein. Biochemical Journal, 2007, 403, e13-e14.	1.7	2

#	Article	IF	CITATIONS
145	Structure, function and regulation of plant photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 335-352.	0.5	198
146	Interorganellar communication. Current Opinion in Plant Biology, 2007, 10, 600-606.	3.5	151
147	Nuclear insertions of organellar DNA can create novel patches of functional exon sequences. Trends in Genetics, 2007, 23, 597-601.	2.9	71
148	The E subunit of photosystem I is not essential for linear electron flow and photoautotrophic growth in Arabidopsis thaliana. Planta, 2007, 226, 889-895.	1.6	45
149	GST-PRIME. Methods in Molecular Biology, 2007, 402, 141-157.	0.4	1
150	Forward Genetic Screening of Insertional Mutants. , 2006, 323, 147-162.		3
151	Abundantly and Rarely Expressed Lhc Protein Genes Exhibit Distinct Regulation Patterns in Plants. Plant Physiology, 2006, 140, 793-804.	2.3	146
152	Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria. Plant Cell, 2006, 18, 970-991.	3.1	117
153	Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends in Genetics, 2005, 21, 655-663.	2.9	167
154	Retrograde Plastid Redox Signals in the Expression of Nuclear Genes for Chloroplast Proteins of Arabidopsis thaliana. Journal of Biological Chemistry, 2005, 280, 5318-5328.	1.6	203
155	Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Research, 2005, 15, 616-628.	2.4	128
156	Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature, 2005, 437, 1179-1182.	13.7	420
157	Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression. Gene, 2005, 344, 33-41.	1.0	81
158	Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene, 2005, 354, 110-116.	1.0	95
159	Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 154-163.	0.5	23
160	NUPTs in Sequenced Eukaryotes and Their Genomic Organization in Relation to NUMTs. Molecular Biology and Evolution, 2004, 21, 1972-1980.	3.5	133
161	A Genome Phylogeny for Mitochondria Among Â-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes. Molecular Biology and Evolution, 2004, 21, 1643-1660.	3.5	307
162	NUMTs in Sequenced Eukaryotic Genomes. Molecular Biology and Evolution, 2004, 21, 1081-1084.	3.5	440

#	Article	IF	CITATIONS
163	Inactivation of the Chloroplast ATP Synthase Î ³ Subunit Results in High Non-photochemical Fluorescence Quenching and Altered Nuclear Gene Expression in Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 1060-1069.	1.6	100
164	Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplast Protein Import Receptors[W]. Plant Cell, 2004, 16, 2059-2077.	3.1	184
165	Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. Journal of Experimental Botany, 2004, 55, 2155-2168.	2.4	123
166	Mutants for photosystem I subunit D ofArabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant Journal, 2004, 37, 839-852.	2.8	117
167	Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in Genetics, 2004, 20, 116-122.	2.9	533
168	The Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase in Proline Degradation[W]. Plant Cell, 2004, 16, 3413-3425.	3.1	228
169	An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene, 2004, 329, 11-16.	1.0	163
170	Evolutionary Contribution of Plastid Genes to Plant Nuclear Genomes and Its Effects on Composition of the Proteomes of All Cellular Compartments. Systematics Association Special Volume, 2004, , 237-257.	0.2	3
171	Chloroplast research in the genomic age. Trends in Genetics, 2003, 19, 47-56.	2.9	424
172	Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends in Genetics, 2003, 19, 356-362.	2.9	75
173	Covariations in the nuclear chloroplast transcriptome reveal a regulatory masterâ€switch. EMBO Reports, 2003, 4, 491-498.	2.0	121
174	From Genes to Photosynthesis in Arabidopsis thaliana. International Review of Cytology, 2003, 228, 31-83.	6.2	35
175	Tracking the function of the cytochrome c6-like protein in higher plants. Trends in Plant Science, 2003, 8, 513-517.	4.3	21
176	Protein-protein and protein-function relationships inArabidopsis photosystem I: cluster analysis of PSI polypeptide levels and photosynthetic parameters in PSI mutants. Journal of Plant Physiology, 2003, 160, 17-22.	1.6	6
177	The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic Proteins[W]. Plant Cell, 2003, 15, 1859-1871.	3.1	153
178	Cytoplasmic N-Terminal Protein Acetylation Is Required for Efficient Photosynthesis in Arabidopsis[W]. Plant Cell, 2003, 15, 1817-1832.	3.1	107
179	SPL8, an SBP-Box Gene That Affects Pollen Sac Development in Arabidopsis. Plant Cell, 2003, 15, 1009-1019.	3.1	227
180	Plastocyanin Is Indispensable for Photosynthetic Electron Flow in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 31286-31289.	1.6	160

#	Article	IF	CITATIONS
181	Knock-Out of the Genes Coding for the Rieske Protein and the ATP-Synthase δ-Subunit of Arabidopsis. Effects on Photosynthesis, Thylakoid Protein Composition, and Nuclear Chloroplast Gene Expression. Plant Physiology, 2003, 133, 191-202.	2.3	81
182	Single and Double Knockouts of the Genes for Photosystem I Subunits G, K, and H of Arabidopsis. Effects on Photosystem I Composition, Photosynthetic Electron Flow, and State Transitions. Plant Physiology, 2002, 129, 616-624.	2.3	78
183	Mode of Amplification and Reorganization of Resistance Genes During Recent Arabidopsis thaliana Evolution. Molecular Biology and Evolution, 2002, 19, 76-84.	3.5	171
184	Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12246-12251.	3.3	1,074
185	Gene-sequence-tag expression analyses of 1,800 genes related to chloroplast functions. Planta, 2002, 215, 101-109.	1.6	41
186	A stable LHCII-PSI aggregate and suppression of photosynthetic state transitions in the psae1-1 mutant of Arabidopsis thaliana. Planta, 2002, 215, 940-948.	1.6	42
187	The role of ΔpH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2002, 40, 41-49.	2.8	66
188	The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant Journal, 2002, 31, 589-599.	2.8	298
189	Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant Journal, 2001, 27, 179-189.	2.8	90
190	Functional genomics of Arabidopsis photosynthesis. Plant Physiology and Biochemistry, 2001, 39, 285-294.	2.8	20
191	GST-PRIME: a genome-wide primer design software for the generation of gene sequence tags. Nucleic Acids Research, 2001, 29, 4373-4377.	6.5	22
192	Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant Journal, 2000, 22, 115-124.	2.8	83
193	Identification of Photosynthetic Mutants of Arabidopsis by Automatic Screening for Altered Effective Quantum Yield of Photosystem 2. Photosynthetica, 2000, 38, 497-504.	0.9	33
194	A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends in Plant Science, 2000, 5, 141-142.	4.3	271
195	Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiology and Biochemistry, 1999, 37, 671-678.	2.8	125
196	RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and Barley (H. vulgare). Theoretical and Applied Genetics, 1999, 98, 509-520.	1.8	63
197	The Mla (Powdery Mildew) Resistance Cluster Is Associated With Three NBS-LRR Gene Families and Suppressed Recombination Within a 240-kb DNA Interval on Chromosome 5S (1HS) of Barley. Genetics, 1999, 153, 1929-1948.	1.2	242
198	Rapid reorganization of resistance gene homologues in cereal genomes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 370-375.	3.3	365

#	Article	IF	CITATIONS
199	Production of long inverse PCR products facilitates the isolation of YAC insert termini. Technical Tips Online, 1997, 2, 11-13.	0.2	3
200	A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical and Applied Genetics, 1997, 95, 246-252.	1.8	104
201	Construction of a potato YAC library and identification of clones linked to the disease resistance loci R1 and Gro1. Theoretical and Applied Genetics, 1997, 95, 954-960.	1.8	9
202	Production of full-length cDNA from a picornaviral genome by RT-PCR. Trends in Genetics, 1996, 12, 11.	2.9	8
203	A PCR–based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14, 421-429.	9.4	501
204	A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular Genetics and Genomics, 1995, 249, 74-81.	2.4	198
205	Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Molecular Genetics and Genomics, 1995, 249, 82-90.	2.4	109
206	Co-replication of several isotypes of foot-and-mouth disease virus. Journal of General Virology, 1993, 74, 2753-2757.	1.3	14