Isabella Rauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089667/publications.pdf

Version: 2024-02-01

36 papers

2,630 citations

304368
22
h-index

377514 34 g-index

44 all docs 44 docs citations

times ranked

44

4779 citing authors

#	Article	IF	CITATIONS
1	Epithelial Pyroptosis in Host Defense. Journal of Molecular Biology, 2022, 434, 167278.	2.0	17
2	Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathogens, 2022, 18, e1009718.	2.1	31
3	Salmonella enterica Serovar Typhimurium Induces NAIP/NLRC4- and NLRP3/ASC-Independent, Caspase-4-Dependent Inflammasome Activation in Human Intestinal Epithelial Cells. Infection and Immunity, 2022, 90, .	1.0	25
4	Lytic Cell Death in Specific Microglial Subsets Is Required for Preventing Atypical Behavior in Mice. ENeuro, 2021, 8, ENEURO.0342-20.2020.	0.9	O
5	PGD2 and CRTH2 counteract Type 2 cytokine–elicited intestinal epithelial responses during helminth infection. Journal of Experimental Medicine, 2021, 218, .	4.2	31
6	Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 2021, 73, 1-8.	2.4	16
7	Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. ELife, 2021, 10, .	2.8	12
8	NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. Journal of Experimental Medicine, 2020, 217, .	4.2	35
9	Transcriptional profiling identifies caspase-1 as a T cell–intrinsic regulator of Th17 differentiation. Journal of Experimental Medicine, 2020, 217, .	4.2	15
10	The NAIP/NLRC4 inflammasome in infection and pathology. Molecular Aspects of Medicine, 2020, 76, 100863.	2.7	50
11	Intestinal restriction of SalmonellaÂTyphimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes. PLoS Pathogens, 2020, 16, e1008498.	2.1	60
12	NAIP–NLRC4-deficient mice are susceptible to shigellosis. ELife, 2020, 9, .	2.8	58
13	Gasdermin-D and Caspase-7 are the key Caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of Legionella pneumophila. PLoS Pathogens, 2019, 15, e1007886.	2.1	65
14	Validation of antibody-based tools for galanin research. Peptides, 2019, 120, 170009.	1.2	11
15	Eicosanoid Isolation from Mouse Intestinal Tissue for ELISA. Bio-protocol, 2018, 8, .	0.2	O
16	NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8. Immunity, 2017, 46, 649-659.	6.6	332
17	NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. Journal of Experimental Medicine, 2016, 213, 657-665.	4.2	88
18	Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.	1.5	106

#	Article	IF	CITATIONS
19	Tracking heavy water (D ₂ O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E194-203.	3.3	359
20	Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons. Molecular and Cellular Biology, 2015, 35, 2332-2343.	1.1	61
21	Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. Journal of Immunology, 2015, 195, 5011-5024.	0.4	40
22	Type I interferons have opposing effects during the emergence and recovery phases of colitis. European Journal of Immunology, 2014, 44, 2749-2760.	1.6	39
23	Regulation of NO Synthesis, Local Inflammation, and Innate Immunity to Pathogens by BET Family Proteins. Molecular and Cellular Biology, 2014, 34, 415-427.	1.1	61
24	Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME Journal, 2014, 8, 1101-1114.	4.4	174
25	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.	3.3	210
26	Galanin is a modulator of eccrine sweat gland secretion. Experimental Dermatology, 2013, 22, 141-143.	1.4	18
27	The regulation of inflammation by interferons and their STATs. Jak-stat, 2013, 2, e23820.	2.2	215
28	Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes. PLoS ONE, 2013, 8, e65007.	1.1	42
29	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.	4.4	291
30	Effects of galanin message-associated peptide and neuropeptide Y against various non-albicans Candida strains. International Journal of Antimicrobial Agents, 2011, 38, 76-80.	1.1	15
31	The Galanin System in Cancer. Exs, 2010, 102, 223-241.	1.4	25
32	Anti-Candida activity of \hat{l}_{\pm} -melanocyte-stimulating hormone (\hat{l}_{\pm} -MSH) peptides. Journal of Leukocyte Biology, 2009, 85, 371-372.	1.5	5
33	Evidence that the Modulatory Effect of Galanin on Inflammatory Edema Formation is Mediated by the Galanin Receptor 3 in the Murine Microvasculature. Journal of Molecular Neuroscience, 2009, 37, 177-181.	1.1	18
34	MMPâ€9 haplotypes and carotid artery atherosclerosis: An association study introducing a novel multicolour multiplex RealTime PCR protocol. European Journal of Clinical Investigation, 2008, 38, 24-33.	1.7	14
35	Alarin is a vasoactive peptide. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10217-10222.	3.3	60
36	Galanin Message-Associated Peptide Suppresses Growth and the Budded-to-Hyphal-Form Transition of <i>Candida albicans </i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 4167-4170.	1.4	25