Dominic Docter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089630/publications.pdf

Version: 2024-02-01

30	5,013	23 h-index	29
papers	citations		g-index
30	30	30	8306
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	15.6	1,817
2	Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis. ACS Nano, 2011, 5, 7155-7167.	7.3	749
3	The nanoparticle biomolecule corona: lessons learned – challenge accepted?. Chemical Society Reviews, 2015, 44, 6094-6121.	18.7	539
4	In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 2016, 45, 2440-2457.	18.7	355
5	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chemical Society Reviews, 2015, 44, 8174-8199.	18.7	268
6	Quantitative profiling of the protein coronas that form around nanoparticles. Nature Protocols, 2014, 9, 2030-2044.	5.5	200
7	Small is Smarter: Nano MRI Contrast Agents – Advantages and Recent Achievements. Small, 2016, 12, 556-576.	5.2	147
8	Protein corona $\hat{a}\in$ from molecular adsorption to physiological complexity. Beilstein Journal of Nanotechnology, 2015, 6, 857-873.	1.5	108
9	No king without a crown – impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine, 2015, 10, 503-519.	1.7	101
10	Changing environments and biomolecule coronas: consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chemistry, 2018, 20, 4133-4168.	4.6	81
11	The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1380-1392.	1.5	68
12	The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Toxicology and Applied Pharmacology, 2016, 299, 53-57.	1.3	61
13	Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum. Langmuir, 2015, 31, 8873-8881.	1.6	50
14	Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials, 2019, 192, 551-559.	5.7	48
15	Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model. Alzheimer's Research and Therapy, 2013, 5, 51.	3.0	45
16	Nanoparticle binding attenuates the pathobiology of gastric cancer-associated <i>Helicobacter pylori</i> . Nanoscale, 2018, 10, 1453-1463.	2.8	45
17	Tuning the Surface of Nanoparticles: Impact of Poly(2â€ethylâ€2â€oxazoline) on Protein Adsorption in Serum and Cellular Uptake. Macromolecular Bioscience, 2016, 16, 1287-1300.	2.1	43
18	Microfluidic Impedimetric Cell Regeneration Assay to Monitor the Enhanced Cytotoxic Effect of Nanomaterial Perfusion. Biosensors, 2015, 5, 736-749.	2.3	40

#	Article	IF	CITATIONS
19	The effect of saliva on the fate of nanoparticles. Clinical Oral Investigations, 2018, 22, 929-940.	1.4	37
20	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	2.5	37
21	An otoprotective role for the apoptosis inhibitor protein survivin. Cell Death and Disease, 2010, 1, e51-e51.	2.7	33
22	The Importinâ€Alpha/Nucleophosmin Switch Controls Taspase1 Protease Function. Traffic, 2011, 12, 703-714.	1.3	32
23	The bio-corona and its impact on nanomaterial toxicity. European Journal of Nanomedicine, 2015, 7, .	0.6	27
24	Expression analysis suggests a potential cytoprotective role of Birc5 in the inner ear. Molecular and Cellular Neurosciences, 2010, 45, 297-305.	1.0	19
25	Bio–Nano Interactions. , 2017, , 1-12.		17
26	Nanoparticle decoration impacts airborne fungal pathobiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7087-7092.	3.3	15
27	Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. Nanoscale Advances, 2020, 2, 5428-5440.	2.2	9
28	Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology, 2020, 14, 1157-1174.	1.6	8
29	Dysregulated Survivin Expression in Nasal Polyps of Individuals with Aspirin Exacerbated Respiratory Disease. American Journal of Rhinology and Allergy, 2012, 26, 380-384.	1.0	7
30	The other side of the corona: nanoparticles inhibit the protease taspase1 in a size-dependent manner. Nanoscale, 2020, 12, 19093-19103.	2.8	7