Eduardo CortÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089621/publications.pdf Version: 2024-02-01

Εουλροο Codtã3n

#	Article	IF	CITATIONS
1	A review on power management systems: An electronic tool to enable microbial fuel cells for powering range of electronic appliances. Journal of Power Sources, 2022, 517, 230688.	7.8	15
2	Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane. Bioresource Technology, 2021, 319, 124168.	9.6	30
3	Attachment of Leptospirillum sp. to chemically modified pyrite surfaces. Fast and simple electrochemical monitoring of bacterial-mineral interactions. Hydrometallurgy, 2021, 199, 105534.	4.3	3
4	Sorting the main bottlenecks to use paper-based microbial fuel cells as convenient and practical analytical devices for environmental toxicity testing. Chemosphere, 2021, 265, 129101.	8.2	10
5	An apta-aggregation based machine learning assay for rapid quantification of lysozyme through texture parameters. PLoS ONE, 2021, 16, e0248159.	2.5	0
6	Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Neglected Tropical Diseases, 2021, 15, e0009406.	3.0	6
7	Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices. PLoS ONE, 2019, 14, e0222538.	2.5	24
8	Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Analytica Chimica Acta, 2019, 1071, 36-43.	5.4	38
9	Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching. Electrochimica Acta, 2018, 265, 569-576.	5.2	23
10	Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paperâ€based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing. Electroanalysis, 2018, 30, 497-508.	2.9	24
11	Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0†K): An approach for (bio)leaching applications. Hydrometallurgy, 2018, 182, 128-135.	4.3	6
12	Hydrophobic Forces Are Relevant to Bacteria-Nanoparticle Interactions: Pseudomonas putida Capture Efficiency by Using Arginine, Cysteine or Oxalate Wrapped Magnetic Nanoparticles. Colloids and Interfaces, 2018, 2, 29.	2.1	6
13	Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin. Electrochimica Acta, 2018, 283, 338-348.	5.2	24
14	Genetic Approaches for Improving Performance of Microbial Fuel Cells: Part A. , 2018, , 243-285.		0
15	Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4. PLoS ONE, 2017, 12, e0169955.	2.5	37
16	BIOASSAYS Microbial Tests â~†. , 2017, , 283-283.		0
17	Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe ₃ O ₄ Nanoparticles, MWCNT, and Graphene Oxide. ACS Applied Materials & Interfaces, 2016, 8, 11-15.	8.0	87
18	Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications. Sensors and Actuators B: Chemical, 2015, 220, 448-455.	7.8	8

Eduardo CortÃ³N

#	Article	IF	CITATIONS
19	A new P. putida instrumental toxicity bioassay. Environmental Monitoring and Assessment, 2015, 187, 294.	2.7	3
20	In Situ Search for Extraterrestrial Life: A Microbial Fuel Cell–Based Sensor for the Detection of Photosynthetic Metabolism. Astrobiology, 2015, 15, 717-727.	3.0	10
21	Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosensors and Bioelectronics, 2015, 63, 580-590.	10.1	117
22	Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosensors and Bioelectronics, 2015, 63, 591-601.	10.1	95
23	Flow-injection amperometric sensor for quantification and speciation of iron. , 2014, , .		0
24	Development of an optical sensor for rapid and automatic gram classification of microorganisms. , 2014, , .		0
25	A simple laser-based device for simultaneous microbial culture and absorbance measurement. Instruments and Experimental Techniques, 2013, 56, 472-476.	0.5	1
26	Voltamperometric Discrimination of Urea and Melamine Adulterated Skimmed Milk Powder. Sensors, 2012, 12, 12220-12234.	3.8	44
27	Metabolism ofKlebsiella pneumoniaefreeze-dried cultures for the design of BOD bioassays. Letters in Applied Microbiology, 2012, 55, 370-375.	2.2	2
28	Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource Technology, 2012, 126, 328-335.	9.6	43
29	Comparative Survival Analysis of <i>Deinococcus radiodurans</i> and the Haloarchaea <i>Natrialba magadii</i> and <i>Haloferax volcanii</i> Exposed to Vacuum Ultraviolet Irradiation. Astrobiology, 2011, 11, 1034-1040.	3.0	26
30	Assessing the effect of oxygen and microbial inhibitors to optimize ferricyanide-mediated BOD assay. Talanta, 2011, 85, 455-462.	5.5	15
31	Flares and habitability. Proceedings of the International Astronomical Union, 2011, 7, 405-409.	0.0	1
32	Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles, 2011, 15, 633-642.	2.3	59
33	A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sensors and Actuators B: Chemical, 2010, 148, 103-109.	7.8	24
34	Microbial Fuel Cells Applied to the Metabolically Based Detection of Extraterrestrial Life. Astrobiology, 2010, 10, 965-971.	3.0	21
35	Development of a Novel Method for in vivo Determination of Activation Energy of Glucose Transport Across S. cerevisiae Cellular Membranes. A Biosensor-like Approach. Sensors, 2009, 9, 1599-1608.	3.8	1
36	UV habitability and dM stars: an approach for evaluation of biological survival. Proceedings of the International Astronomical Union, 2009, 5, 443-445.	0.0	1

EDUARDO CORTÃ³N

#	Article	IF	CITATIONS
37	Kinetics and binding properties of cloramphenicol imprinted polymers. Journal of Non-Crystalline Solids, 2007, 353, 974-980.	3.1	30
38	Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. Journal of Proteomics, 2007, 70, 455-464.	2.4	14
39	Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosensors and Bioelectronics, 2003, 18, 907-916.	10.1	71
40	Learning Stoichiometry with Hamburger Sandwiches. Journal of Chemical Education, 2003, 80, 1021.	2.3	10
41	A Nonradioactive Simulation of the Viking Mission Labeled-Release Experiment: A Search for Evidence of Life. Journal of Chemical Education, 2002, 79, 1105.	2.3	1
42	A Novel Electrochemical Method for the Identification of Microorganisms. Electroanalysis, 2001, 13, 999-1002.	2.9	2
43	Effect of milk proteins on the behavior of a biosensor based on poly(allylamine) containing an osmium complex wired to redox enzymes. Journal of Electroanalytical Chemistry, 2001, 511, 8-12.	3.8	9
44	Effect of milk proteins on the behavior of a biosensor based on poly(allylamine) containing an osmium complex wired to redox enzymes. Journal of Electroanalytical Chemistry, 2001, 511, 1-7.	3.8	8
45	Characterization of Lactobacillus Carbohydrate Fermentation Activity Using Immobilized Cell Technique. Biotechnology Progress, 2000, 16, 59-63.	2.6	24
46	Potentiometric Determination of CO2 Concentration in the Gaseous Phase: Applications in Different Laboratory Activities. Journal of Chemical Education, 2000, 77, 1188.	2.3	8
47	CO2 - Potentiometric Determination and Electrode Construction, a Hands-on Approach. Journal of Chemical Education, 1999, 76, 1253.	2.3	10
48	Osmium complexes bearing functional groups: building blocks for integrated chemical systems. Journal of Electroanalytical Chemistry, 1998, 445, 89-94.	3.8	82
49	Simple flow injection analysis system for determination of added sugars in dairy products. Journal of Dairy Research, 1998, 65, 675-680.	1.4	5
50	Leaching of Pyrite by <i>Acidithiobacillus ferrooxidans</i> Monitored by Electrochemical Methods. Solid State Phenomena, 0, 262, 541-544.	0.3	1