
Jessie S Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808940/publications.pdf Version: 2024-02-01

FESTE S FON

#	Article	IF	CITATIONS
1	Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 214-219.	7.1	616
2	Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nature Protocols, 2012, 7, 1247-1259.	12.0	518
3	A microfluidic 3D inÂvitro model for specificity of breast cancer metastasis to bone. Biomaterials, 2014, 35, 2454-2461.	11.4	440
4	Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integrative Biology (United Kingdom), 2013, 5, 1262.	1.3	244
5	In Vitro Model of Tumor Cell Extravasation. PLoS ONE, 2013, 8, e56910.	2.5	201
6	Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology (United Kingdom), 2014, 6, 555-563.	1.3	195
7	In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab on A Chip, 2011, 11, 2175.	6.0	142
8	A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab on A Chip, 2015, 15, 301-310.	6.0	116
9	Vasculature-On-A-Chip for In Vitro Disease Models. Bioengineering, 2017, 4, 8.	3.5	114
10	A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab on A Chip, 2012, 12, 3861.	6.0	93
11	Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy, 2019, 55, 348-353.	16.0	86
12	Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomedical Microdevices, 2011, 13, 325-333.	2.8	83
13	In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discovery Today, 2014, 19, 735-742.	6.4	73
14	Recent Developments of Chip-based Phenotypic Antibiotic Susceptibility Testing. Biochip Journal, 2019, 13, 43-52.	4.9	30
15	Constructive remodeling of a synthetic endothelial extracellular matrix. Scientific Reports, 2016, 5, 18290.	3.3	28
16	On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients. Lab on A Chip, 2019, 19, 959-973.	6.0	27
17	Microfluidic-based observation of local bacterial density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing. Biomicrofluidics, 2019, 13, 014108.	2.4	25
18	Cancer cell migration and cancer drug screening in oxygen tension gradient chip. Biomicrofluidics, 2020, 14, 044107.	2.4	24

JESSIE S JEON

#	Article	IF	CITATIONS
19	Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems. Sensors, 2018, 18, 447.	3.8	21
20	Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles. Analytical Chemistry, 2021, 93, 8309-8317.	6.5	18
21	Microfluidic Tumor Vasculature Model to Recapitulate an Endothelial Immune Barrier Expressing FasL. ACS Biomaterials Science and Engineering, 2021, 7, 1230-1241.	5.2	17
22	Development of Microfluidic Stretch System for Studying Recovery of Damaged Skeletal Muscle Cells. Micromachines, 2018, 9, 671.	2.9	16
23	Lipopolysaccharide-Induced Vascular Inflammation Model on Microfluidic Chip. Micromachines, 2020, 11, 747.	2.9	15
24	Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. Lab on A Chip, 2021, 21, 494-501.	6.0	15
25	Recycling silver nanoparticle debris from laser ablation of silver nanowire in liquid media toward minimum material waste. Scientific Reports, 2021, 11, 2262.	3.3	14
26	Chemotaxis Model for Breast Cancer Cells Based onÂSignal/Noise Ratio. Biophysical Journal, 2018, 115, 2034-2043.	0.5	13
27	Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. Lab on A Chip, 2019, 19, 3664-3677.	6.0	13
28	Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology. Micromachines, 2021, 12, 215.	2.9	12
29	Manipulation of cancer cells in a sessile droplet <i>via</i> travelling surface acoustic waves. Lab on A Chip, 2021, 22, 47-56.	6.0	10
30	Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. Sensors, 2020, 20, 5089.	3.8	9
31	Antibiotic susceptibility test under a linear concentration gradient using travelling surface acoustic waves. Lab on A Chip, 2021, 21, 3449-3457.	6.0	9
32	Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor. Advanced Science, 2022, 9, e2105809.	11.2	6
33	Vision Marker-Based In Situ Examination of Bacterial Growth in Liquid Culture Media. Sensors, 2016, 16, 2179.	3.8	5
34	MineLoC: A Rapid Production of Lab-on-a-Chip Biosensors Using 3D Printer and the Sandbox Game, Minecraft. Sensors, 2018, 18, 1896.	3.8	5
35	Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E760-E772.	3.5	5
36	Three-dimensional pore network characterization of reconstructed extracellular matrix. Physical Review E, 2020, 101, 052414.	2.1	5

Jessie S Jeon

#	Article	IF	CITATIONS
37	Electrospun Microvasculature for Rapid Vascular Network Restoration. Tissue Engineering and Regenerative Medicine, 2021, 18, 89-97.	3.7	4
38	A Microfluidic Stretch System Upregulates Resistance Exercise-Related Pathway. Biochip Journal, 2022, 16, 158-167.	4.9	4
39	Light Emitting Marker for Robust Vision-Based On-The-Spot Bacterial Growth Detection. Sensors, 2017, 17, 1459.	3.8	3
40	Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129796.	2.4	3
41	Surface tethering of stromal cell-derived factor- $1\hat{l}\pm$ carriers to stem cells enhances cell homing to ischemic muscle. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102215.	3.3	2
42	Reagent- and actuator-free analysis of individual erythrocytes using three-dimensional quantitative phase imaging and capillary microfluidics. Sensors and Actuators B: Chemical, 2021, 348, 130689.	7.8	2
43	Investigation on the Effect of Cyclic Stretch and Hypoxia on Recovery of Damaged Skeletal Muscle Cells Using Microfluidic System. Advanced Materials Technologies, 0, , 2100465.	5.8	1
44	Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor (Adv. Sci. 16/2022). Advanced Science, 2022, 9, .	11.2	1
45	Microfluidic Platforms for Evaluating Angiogenesis and Vasculogenesis. , 2013, , 385-403.		0
46	Study of tumor angiogenesis using microfluidic approaches. , 0, , 330-346.		0
47	Investigation on the Effect of Cyclic Stretch and Hypoxia on Recovery of Damaged Skeletal Muscle Cells Using Microfluidic System (Adv. Mater. Technol. 11/2021). Advanced Materials Technologies, 2021, 6, 2170063.	5.8	0