
Steven P. Loheide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089393/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Science of the Total Environment, 2022, 806, 151296.	8.0	28
2	Indicators of regional high capacity well impacts predicts fen floristic quality and composition in Wisconsin calcareous fens. Biological Conservation, 2022, 266, 109448.	4.1	1
3	Climatic controls on the hydrologic effects of urban low impact development practices. Environmental Research Letters, 2021, 16, 064021.	5.2	9
4	Groundwater subsidizes tree growth and transpiration in sandy humid forests. Ecohydrology, 2021, 14, e2294.	2.4	9
5	The motion of trees in the wind: a data synthesis. Biogeosciences, 2021, 18, 4059-4072.	3.3	28
6	Monitoring Tree Sway as an Indicator of Interception Dynamics Before, During, and Following a Storm. Geophysical Research Letters, 2021, 48, e2021GL094980.	4.0	2
7	Adding our leaves: A communityâ€wide perspective on research directions in ecohydrology. Hydrological Processes, 2020, 34, 1665-1673.	2.6	3
8	Where and When Soil Amendment is Most Effective as a Low Impact Development Practice in Residential Areas. Journal of the American Water Resources Association, 2020, 56, 776-789.	2.4	8
9	Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters. Frontiers in Water, 2020, 2, .	2.3	11
10	Impacts of groundwater extraction on calcareous fen floristic quality. Journal of Environmental Quality, 2020, 49, 723-734.	2.0	7
11	Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA. Journal of Hydrology, 2019, 577, 123920.	5.4	4
12	Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Science of the Total Environment, 2019, 693, 133484.	8.0	20
13	Monitoring Tree Sway as an Indicator of Water Stress. Geophysical Research Letters, 2019, 46, 12021-12029.	4.0	9
14	Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nature Sustainability, 2019, 2, 475-483.	23.7	42
15	Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sensing, 2019, 11, 2460.	4.0	9
16	Understanding relationships among ecosystem services across spatial scales and over time. Environmental Research Letters, 2018, 13, 054020.	5.2	76
17	Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology. Energy and Buildings, 2018, 173, 239-251.	6.7	33
18	Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecological Applications, 2018, 28, 119-134.	3.8	34

STEVEN P. LOHEIDE

#	Article	IF	CITATIONS
19	Drivers of Potential Recharge from Irrigated Agroecosystems in the Wisconsin Central Sands. Vadose Zone Journal, 2018, 17, 1-22.	2.2	11
20	Urban Residential Surface and Subsurface Hydrology: Synergistic Effects of Lowâ€Impact Features at the Parcel Scale. Water Resources Research, 2018, 54, 8216-8233.	4.2	36
21	Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 2018, 565, 106-122.	5.4	30
22	Urban heat islandâ€induced increases in evapotranspirative demand. Geophysical Research Letters, 2017, 44, 873-881.	4.0	65
23	The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. Ecosystems, 2017, 20, 1468-1482.	3.4	60
24	Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model. Ecological Modelling, 2017, 359, 201-219.	2.5	34
25	Relationship between root water uptake and soil respiration: A modeling perspective. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1954-1968.	3.0	21
26	The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrological Processes, 2017, 31, 891-901.	2.6	82
27	Effects of Root Distribution and Root Water Compensation on Simulated Water Use in Maize Influenced by Shallow Groundwater. Vadose Zone Journal, 2017, 16, 1-15.	2.2	12
28	How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sensing, 2016, 8, 597.	4.0	91
29	Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environmental Research Letters, 2016, 11, 054023.	5.2	148
30	Obstacles to longâ€ŧerm soil moisture monitoring with heated distributed temperature sensing. Hydrological Processes, 2016, 30, 1017-1035.	2.6	27
31	From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. Environmental Modelling and Software, 2016, 85, 80-97.	4.5	44
32	Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA. Ecosystem Services, 2016, 21, 153-165.	5.4	25
33	Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 2016, 380, 335-345.	3.2	67
34	Untangling the effects of shallow groundwater and soil texture as drivers of subfieldâ€scale yield variability. Water Resources Research, 2015, 51, 6338-6358.	4.2	91
35	Visualizing Large Data Sets: Spatial and Temporal Soil Moisture Regime Dynamics. Vadose Zone Journal, 2015, 14, 1-7.	2.2	2
36	Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecology and Society, 2015, 20, .	2.3	70

STEVEN P. LOHEIDE

#	Article	IF	CITATIONS
37	Instream Restoration to Improve the Ecohydrologic Function of a Subalpine Meadow: Preâ€implementation Modeling with HECâ€RAS. Journal of the American Water Resources Association, 2014, 50, 1033-1050.	2.4	5
38	Root water compensation sustains transpiration rates in an Australian woodland. Advances in Water Resources, 2014, 74, 91-101.	3.8	28
39	Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model. Agricultural and Forest Meteorology, 2014, 197, 91-102.	4.8	39
40	Hydrologic Regimes Revealed Bundles and Tradeoffs Among Six Wetland Services. Ecosystems, 2014, 17, 1026-1039.	3.4	28
41	Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem – Variably saturated soil water flow model. Agricultural and Forest Meteorology, 2014, 189-190, 198-210.	4.8	72
42	Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmeltâ€dominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918.	2.6	52
43	Dynamic ice formation in channels as a driver for streamâ€aquifer interactions. Geophysical Research Letters, 2013, 40, 3408-3412.	4.0	6
44	Heated Distributed Temperature Sensing for Field Scale Soil Moisture Monitoring. Ground Water, 2012, 50, 340-347.	1.3	84
45	Hydroecological model predictions indicate wetter and more diverse soil water regimes and vegetation types following floodplain restoration. Journal of Geophysical Research, 2012, 117, .	3.3	27
46	Monitoring and modeling waterâ€vegetation interactions in groundwaterâ€dependent ecosystems. Reviews of Geophysics, 2012, 50, .	23.0	168
47	On evapotranspiration and shallow groundwater fluctuations: A Fourierâ€based improvement to the White method. Water Resources Research, 2012, 48, .	4.2	46
48	Comparing surface effective saturation and depthâ€toâ€waterâ€level as predictors of plant composition in a restored riparian wetland. Ecohydrology, 2012, 5, 637-647.	2.4	18
49	Sensitivity of Thermal Habitat of a Trout Stream to Potential Climate Change, Wisconsin, United States ¹ . Journal of the American Water Resources Association, 2012, 48, 1091-1103.	2.4	17
50	How evaporative water losses vary between wet and dry water years as a function of elevation in the Sierra Nevada, California, and critical factors for modeling. Water Resources Research, 2011, 47, .	4.2	27
51	Groundwater controls on vegetation composition and patterning in mountain meadows. Water Resources Research, 2011, 47, .	4.2	71
52	Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology, 2011, 126, 364-376.	2.6	56
53	Linking Physical and Numerical Modelling in Hydrogeology using Sand Tank Experiments and COMSOL Multiphysics. International Journal of Science Education, 2011, 33, 547-571.	1.9	17
54	Reply to comment on "A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA― paper published in Hydrogeology Journal (2009) 17:229–246, by Steven P. Loheide II, Richard S. Deitchman, David J. Cooper, Evan C. Wolf, Christopher T. Hammersmark, Jessica D. Lundquist. Hydrogeology Journal, 2010, 18, 1745-1746.	2.1	1

STEVEN P. LOHEIDE

#	Article	IF	CITATIONS
55	Effects of evapotranspiration partitioning, plant water stress response and topsoil removal on the soil moisture regime of a floodplain wetland: implications for restoration. Hydrological Processes, 2010, 24, 2934-2946.	2.6	28
56	Linking snowmeltâ€derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrological Processes, 2010, 24, 2821-2833.	2.6	37
57	Groundwaterâ€dependent vegetation: Quantifying the groundwater subsidy. Water Resources Research, 2010, 46, .	4.2	65
58	A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA. Hydrogeology Journal, 2009, 17, 229-246.	2.1	72
59	COMSOL Multiphysics: A Novel Approach to Ground Water Modeling. Ground Water, 2009, 47, 480-487.	1.3	121
60	Groundâ€based thermal imaging of groundwater flow processes at the seepage face. Geophysical Research Letters, 2009, 36, .	4.0	51
61	Snowmeltâ€induced diel fluxes through the hyporheic zone. Water Resources Research, 2009, 45, .	4.2	67
62	Postsettlement Alluvium Removal: A Novel Floodplain Restoration Technique (Wisconsin). Ecological Restoration, 2009, 27, 136-139.	0.5	22
63	A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology, 2008, 1, 59-66.	2.4	108
64	A field investigation of phreatophyte-induced fluctuations in the water table. Water Resources Research, 2007, 43, .	4.2	122
65	Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resources Research, 2007, 43, .	4.2	112
66	Quantifying Streamâ^'Aquifer Interactions through the Analysis of Remotely Sensed Thermographic Profiles and In Situ Temperature Histories. Environmental Science & Technology, 2006, 40, 3336-3341.	10.0	159
67	A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites. Remote Sensing of Environment, 2005, 98, 182-200.	11.0	85
68	Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resources Research, 2005, 41, .	4.2	241
69	Noise in Pressure Transducer Readings Produced by Variations in Solar Radiation. Ground Water, 2004, 42, 939-944.	1.3	17
70	Hydraulic Tests with Direct-Push Equipment. Ground Water, 2002, 40, 25-36.	1.3	101