Denise V Tambourgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8089335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sphingomyelinases in the Venom of the SpiderLoxosceles intermediaAre Responsible for both Dermonecrosis and Complement-Dependent Hemolysis. Biochemical and Biophysical Research Communications, 1998, 251, 366-373.	1.0	154
2	lgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 2010, 135, 173-180.	0.5	150
3	Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon, 2000, 38, 1253-1266.	0.8	123
4	Spider and Bacterial Sphingomyelinases D Target Cellular Lysophosphatidic Acid Receptors by Hydrolyzing Lysophosphatidylcholine. Journal of Biological Chemistry, 2004, 279, 10833-10836.	1.6	116
5	Ordered Mesoporous Silica SBA-15: A New Effective Adjuvant to Induce Antibody Response. Small, 2006, 2, 254-256.	5.2	110
6	Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics, 2008, 9, 279.	1.2	110
7	Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochemical and Biophysical Research Communications, 2002, 298, 638-645.	1.0	108
8	Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, 2008, 52, 842-851.	0.8	103
9	Loxosceles intermedia spider envenomation induces activation of an endogenous metalloproteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis. Blood, 2000, 95, 683-691.	0.6	94
10	Immunological parameters related to the adjuvant effect of the ordered mesoporous silica SBA-15. Vaccine, 2010, 28, 7829-7836.	1.7	93
11	Structural Basis for Metal Ion Coordination and the Catalytic Mechanism of Sphingomyelinases D. Journal of Biological Chemistry, 2005, 280, 13658-13664.	1.6	90
12	Loxoscelism: From basic research to the proposal of new therapies. Toxicon, 2010, 56, 1113-1119.	0.8	90
13	Diversity of Micrurus Snake Species Related to Their Venom Toxic Effects and the Prospective of Antivenom Neutralization. PLoS Neglected Tropical Diseases, 2010, 4, e622.	1.3	81
14	Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunology, 2002, 107, 93-101.	2.0	79
15	Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation. Toxicon, 2005, 45, 421-429.	0.8	75
16	Loxosceles Sphingomyelinase Induces Complement-Dependent Dermonecrosis, Neutrophil Infiltration, and Endogenous Gelatinase Expression. Journal of Investigative Dermatology, 2005, 124, 725-731.	0.3	72
17	Bothrops aspersnake venom and its metalloproteinase BaP–1 activate the complement system. Role in leucocyte recruitment. Mediators of Inflammation, 2000, 9, 213-221.	1.4	70
18	Endotoxemic-like shock induced by Loxosceles spider venoms: pathological changes and putative cytokine mediators. Toxicon, 1998, 36, 391-403.	0.8	69

Denise V Tambourgi

#	Article	IF	CITATIONS
19	Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands1. Molecular Immunology, 2004, 41, 831-840.	1.0	68
20	Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3828-3833.	3.3	68
21	Snakebites and Scorpion Stings in the Brazilian Amazon: Identifying Research Priorities for a Largely Neglected Problem. PLoS Neglected Tropical Diseases, 2015, 9, e0003701.	1.3	65
22	Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to glycerophosphodiester phosphodiesterases. Biochemical and Biophysical Research Communications, 2006, 342, 323-329.	1.0	63
23	A partial cDNA clone of trypomastigote decay-accelerating factor (T-DAF), a developmentally regulated complement inhibitor of Trypanosoma cruzi, has genetic and functional similarities to the human complement inhibitor DAF. Infection and Immunity, 1993, 61, 3656-3663.	1.0	62
24	Mechanism of Neutrophil Dysfunction: Neutrophil Serine Proteases Cleave and Inactivate the C5a Receptor. Journal of Immunology, 2014, 192, 1787-1795.	0.4	60
25	Sex-linked variation of Loxosceles intermedia spider venoms. Toxicon, 1999, 37, 217-221.	0.8	59
26	Proâ€inflammatory activities in elapid snake venoms. British Journal of Pharmacology, 1994, 112, 723-727.	2.7	53
27	The inguinal macroglands of the frog Physalaemus nattereri (Leptodactylidae): structure, toxic secretion and relationship with deimatic behaviour. Journal of Zoology, 2005, 266, 385-394.	0.8	51
28	Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus. Molecular Immunology, 2010, 47, 2537-2544.	1.0	47
29	A New Anti-Ioxoscelic Serum Produced Against Recombinant Sphingomyelinase D: Results of Preclinical Trials. American Journal of Tropical Medicine and Hygiene, 2008, 79, 463-470.	0.6	47
30	Tetracycline Protects against Dermonecrosis Induced by Loxosceles Spider Venom. Journal of Investigative Dermatology, 2007, 127, 1410-1418.	0.3	46
31	Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms. Toxicon, 2013, 69, 180-190.	0.8	45
32	Role of Matrix Metalloproteinases in HaCaT Keratinocytes Apoptosis Induced by Loxosceles Venom Sphingomyelinase D. Journal of Investigative Dermatology, 2006, 126, 61-68.	0.3	44
33	Loxosceles spider venom induces metalloproteinase mediated cleavage of MCP/CD46 and MHCI and induces protection against C-mediated lysis. Immunology, 2002, 107, 102-110.	2.0	43
34	Head co-ossification, phragmosis and defence in the casque-headed tree frog Corythomantis greeningi. Journal of Zoology, 2005, 265, 1-8.	0.8	43
35	Sphingomyelinases D induce direct association of C1q to the erythrocyte membrane causing complement mediated autologous haemolysis. Molecular Immunology, 2007, 44, 576-582.	1.0	42
36	SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: Molecular cloning, expression, function and structural analysis. Toxicon, 2009, 53, 743-753.	0.8	38

DENISE V TAMBOURGI

#	Article	IF	CITATIONS
37	Ontogenetic development of Loxosceles intermedia spider venom. Toxicon, 1999, 37, 627-632.	0.8	35
38	Micrurus snake venoms activate human complement system and generate anaphylatoxins. BMC Immunology, 2012, 13, 4.	0.9	34
39	Secretion of a Neuropeptide-Metabolizing Enzyme Similar to Endopeptidase 22.19 by Glioma C6-Cells. Biochemical and Biophysical Research Communications, 1993, 191, 275-281.	1.0	33
40	P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade. PLoS Neglected Tropical Diseases, 2013, 7, e2519.	1.3	33
41	Animal venoms/toxins and the complement system. Molecular Immunology, 2014, 61, 153-162.	1.0	33
42	Nanostructured SBA-15 silica: An effective protective vehicle to oral hepatitis B vaccine immunization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2241-2250.	1.7	32
43	Micrurus snake species: Venom immunogenicity, antiserum cross-reactivity and neutralization potential. Toxicon, 2016, 117, 59-68.	0.8	31
44	<i>Leptospira interrogans</i> outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence, 2018, 9, 414-425.	1.8	31
45	Molecular and Immunochemical Evidences Demonstrate That Endooligopeptidase A Is the Predominant Cytosolic Oligopeptidase of Rabbit Brain. Biochemical and Biophysical Research Communications, 2000, 269, 7-13.	1.0	30
46	Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region. Toxicon, 2010, 55, 881-887.	0.8	30
47	Persistence and Intra-Host Genetic Evolution of Zika Virus Infection in Symptomatic Adults: A Special View in the Male Reproductive System. Viruses, 2018, 10, 615.	1.5	30
48	The improvement of the therapeutic anti-Lachesis muta serum production in horses. Toxicon, 2005, 45, 467-473.	0.8	29
49	Duvernoy's gland secretion of Philodryas olfersii and Philodryas patagoniensis (Colubridae): Neutralization of local and systemic effects by commercial bothropic antivenom (Bothrops genus). Toxicon, 2006, 47, 95-103.	0.8	29
50	Inhibition of local effects induced by Bothrops erythromelas snake venom: Assessment of the effectiveness of Brazilian polyvalent bothropic antivenom and aqueous leaf extract of Jatropha gossypiifolia. Toxicon, 2017, 125, 74-83.	0.8	28
51	Anticomplementary Activity of Horse IgG and F(ab')2 Antivenoms. American Journal of Tropical Medicine and Hygiene, 2014, 90, 574-584.	0.6	25
52	Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation. Toxins, 2017, 9, 244.	1.5	25
53	Analysis of the toxic potential of venom from Loxosceles adelaida, a Brazilian brown spider from karstic areas. Toxicon, 2005, 45, 449-458.	0.8	24
54	Loxosceles spider venom induces the release of thrombomodulin and endothelial protein C receptor: implications for the pathogenesis of intravascular coagulation as observed in loxoscelism. Journal of Thrombosis and Haemostasis, 2007, 5, 989-995.	1.9	24

#	Article	IF	CITATIONS
55	Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation. PLoS Neglected Tropical Diseases, 2019, 13, e0007017.	1.3	24
56	Premolis semirufa (Walker, 1856) Envenomation, Disease Affecting Rubber Tappers of the Amazon: Searching for Caterpillar-Bristles Toxic Components. PLoS Neglected Tropical Diseases, 2012, 6, e1531.	1.3	23
57	New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1180-1187.	1.1	22
58	The history of antivenoms development: Beyond Calmette and Vital Brazil. Toxicon, 2018, 150, 86-95.	0.8	22
59	Immunochemical and proteomic technologies as tools for unravelling toxins involved in envenoming by accidental contact with Lonomia obliqua caterpillars. Toxicon, 2008, 51, 1017-1028.	0.8	21
60	Angiotensin-degrading serine peptidase: A new chymotrypsin-like activity in the venom of Bothrops jararaca partially blocked by the commercial antivenom. Toxicon, 2012, 59, 124-131.	0.8	21
61	Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis. PLoS ONE, 2016, 11, e0153090.	1.1	21
62	Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Archives of Toxicology, 2020, 94, 1461-1477.	1.9	21
63	First record on Loxosceles laeta (Nicolet, 1849) (Araneae, Sicariidae) in the West Zone of São Paulo City, São Paulo, Brazil, and considerations regarding its geographic distribution. Revista Da Sociedade Brasileira De Medicina Tropical, 2003, 36, 425-426.	0.4	20
64	Venom of the Brazilian Spider Sicarius ornatus (Araneae, Sicariidae) Contains Active Sphingomyelinase D: Potential for Toxicity after Envenomation. PLoS Neglected Tropical Diseases, 2013, 7, e2394.	1.3	20
65	Caissarolysin I (Bcs I), a new hemolytic toxin from the Brazilian sea anemone Bunodosoma caissarum: Purification and biological characterization. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 453-461.	1.1	19
66	Kinetic and mechanistic characterization of the Sphingomyelinases D from Loxosceles intermedia spider venom. Toxicon, 2006, 47, 380-386.	0.8	19
67	Comparison of two Jatropha species (Euphorbiaceae) used popularly to treat snakebites in Northeastern Brazil: Chemical profile, inhibitory activity against Bothrops erythromelas venom and antibacterial activity. Journal of Ethnopharmacology, 2018, 213, 12-20.	2.0	19
68	Characterization of Phenotypes of Immune Cells and Cytokines Associated with Chronic Exposure to Premolis semirufa Caterpillar Bristles Extract. PLoS ONE, 2013, 8, e71938.	1.1	17
69	Adaptive evolution in the toxicity of a spider's venom enzymes. BMC Evolutionary Biology, 2015, 15, 290.	3.2	16
70	Loxosceles venom Sphingomyelinase D activates human blood leukocytes: Role of the complement system. Molecular Immunology, 2018, 94, 45-53.	1.0	16
71	Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon, 2018, 153, 39-52.	0.8	16
72	Targeting <i>Loxosceles</i> spider Sphingomyelinase D with small-molecule inhibitors as a potential therapeutic approach for loxoscelism. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 310-321.	2.5	16

#	Article	IF	CITATIONS
	Susceptibility of different strains of mice to South American rattlesnake (Crotalus durissus) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 3
73	783-786.	0.8	15
74	African Adders: Partial Characterization of Snake Venoms from Three Bitis Species of Medical Importance and Their Neutralization by Experimental Equine Antivenoms. PLoS Neglected Tropical Diseases, 2015, 9, e0003419.	1.3	15
75	A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator. PLoS ONE, 2015, 10, e0118615.	1.1	15
76	The Humoral Immune Response Induced by Snake Venom Toxins. Inflammation and Allergy: Drug Targets, 2011, 10, 343-357.	1.8	14
77	Venom from <i>Bothrops lanceolatus</i> , a Snake Species Native to Martinique, Potently Activates the Complement System. Journal of Immunology Research, 2018, 2018, 1-11.	0.9	14
78	Nanostructured SBA-15 silica as an adjuvant in immunizations with hepatitis B vaccine. Einstein (Sao) Tj ETQq0 0	0,rgBT /O∙	verlock 10 T
79	C5a receptor is cleaved by metalloproteases induced by sphingomyelinase D from Loxosceles spider venom. Immunobiology, 2012, 217, 935-941.	0.8	13
80	Ipomoea asarifolia neutralizes inflammation induced by Tityus serrulatus scorpion venom. Journal of Ethnopharmacology, 2014, 153, 890-895.	2.0	13
81	Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom. Toxins, 2017, 9, 90.	1.5	13
82	Kn-Ba: a novel serine protease isolated from Bitis arietans snake venom with fibrinogenolytic and kinin-releasing activities. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2018, 24, 38.	0.8	13
83	A biotechnological approach to immunotherapy: Antivenom against Crotalus durissus cascavella snake venom produced from biodegradable nanoparticles. International Journal of Biological Macromolecules, 2018, 120, 1917-1924.	3.6	13
84	Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase. Frontiers in Immunology, 2019, 10, 1137.	2.2	13
85	Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Frontiers in Pharmacology, 2020, 11, 636.	1.6	13
86	COMPARISON OF THE FERTILITY BETWEEN LOXOSCELES INTERMEDIA AND LOXOSCELES LAETA SPIDERS (ARANEAE, SICARIIDAE). Journal of Arachnology, 2000, 28, 245-247.	0.3	12
87	Conformational changes of Loxosceles venom sphingomyelinases monitored by circular dichroism. Biochemical and Biophysical Research Communications, 2005, 327, 117-123.	1.0	12
88	Administration of M. leprae Hsp65 Interferes with the Murine Lupus Progression. PLoS ONE, 2008, 3, e3025.	1.1	12
89	Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant. Toxins, 2018, 10, 158.	1.5	12
90	A new anti-loxoscelic serum produced against recombinant sphingomyelinase D: results of preclinical trials. American Journal of Tropical Medicine and Hygiene, 2008, 79, 463-70.	0.6	12

#	Article	IF	CITATIONS
91	Trypanosoma cruzi: Antibody-dependent killing of bloodstream trypomastigotes by mouse bone marrow-derived mast cells and by mastocytoma cells. Experimental Parasitology, 1989, 68, 192-201.	0.5	11
92	Complement Activation by Animal Venoms. Toxin Reviews, 1995, 14, 375-400.	1.5	11
93	Comment on "Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms― Toxicon, 2011, 57, 1109-1110.	0.8	11
94	Characterization of anti-crotalic antibodies. Toxicon, 2013, 66, 7-17.	0.8	11
95	Neutralizing Effects of <i>Mimosa tenuiflora</i> Extracts against Inflammation Caused by <i>Tityus serrulatus</i> Scorpion Venom. BioMed Research International, 2014, 2014, 1-8.	0.9	11
96	Bothrops lanceolatus snake (Fer-de-lance) venom triggers inflammatory mediators' storm in human blood. Archives of Toxicology, 2021, 95, 1129-1138.	1.9	11
97	[des-Arg 1]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom. Peptides, 2016, 80, 18-24.	1.2	9
98	Comparative analysis of a Bordetella pertussis patient isolated strain and classical strains used in the pertussis vaccine. Vaccine, 2005, 23, 4353-4358.	1.7	8
99	Genetic selection for resistance or susceptibility to oral tolerance imparts correlation to both Immunoglobulin E level and mast cell number phenotypes with a profound impact on the atopic potential of the individual. Clinical and Experimental Allergy, 2006, 36, 1399-1407.	1.4	8
100	Lonomia obliqua (Lepidoptera, Saturniidae) caterpillar bristle extract induces direct lysis by cleaving erythrocyte membrane glycoproteins. Toxicon, 2010, 55, 1323-1330.	0.8	8
101	EcTI impairs survival and proliferation pathways in triple-negative breast cancer by modulating cell-glycosaminoglycans and inflammatory cytokines. Cancer Letters, 2020, 491, 108-120.	3.2	8
102	C5a-C5aR1 Axis Activation Drives Envenomation Immunopathology by the Snake Naja annulifera. Frontiers in Immunology, 2021, 12, 652242.	2.2	8
103	Anti-SARS-CoV-2 equine F (Ab′)2 immunoglobulin as a possible therapy for COVID-19. Scientific Reports, 2022, 12, 3890.	1.6	8
104	Quantitative evaluation of blood elements by neutron activation analysis in mice immunized with Bothrops snake venoms. Journal of Radioanalytical and Nuclear Chemistry, 2009, 282, 37-39.	0.7	7
105	Neuropeptide Y Family-Degrading Metallopeptidases in theTityus serrulatusVenom Partially Blocked by Commercial Antivenoms. Toxicological Sciences, 2014, 142, 418-426.	1.4	7
106	Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications. Immunobiology, 2016, 221, 953-963.	0.8	7
107	Microcirculation abnormalities provoked by Loxosceles spiders' envenomation. Toxicon, 2016, 116, 35-42.	0.8	7
108	Detection of Trypanosoma-Decay Accelerating Factor Antibodies in Mice and Humans Infected with Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene, 1995, 52, 516-520.	0.6	7

DENISE V TAMBOURGI

#	Article	IF	CITATIONS
109	Lagochilascaris minor: Experimental infection of C57BL/6 and BALB/c isogenic mice reveals the presence of adult worms. Experimental Parasitology, 2008, 119, 325-331.	0.5	6
110	<i>Ctenus medius</i> and <i>Phoneutria nigriventer</i> Spiders Venoms Share Noxious Proinflammatory Activities. Journal of Medical Entomology, 2009, 46, 58-66.	0.9	6
111	Quality of horse F(ab')2 antitoxins and anti-rabies immunoglobulins: protein content and anticomplementary activity. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2018, 24, 16.	0.8	6
112	Crystallization and preliminary crystallographic analysis of SMase I, a sphingomyelinase fromLoxosceles laetaspider venom. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1112-1114.	2.5	5
113	<i>Lagochilascaris minor</i> : Susceptibility and Resistance to Experimental Infection in Mice Is Independent of H-2 ^a Haplotype and Correlates with the Immune Response in Immunized Animals. Journal of Parasitology Research, 2010, 2010, 1-8.	0.5	5
114	Antibody Response from Whole-Cell Pertussis Vaccine Immunized Brazilian Children against Different Strains of Bordetella pertussis. American Journal of Tropical Medicine and Hygiene, 2010, 82, 678-682.	0.6	5
115	Insights into scorpion venom peptides: Alternative processing of Î ² -KTx propeptide from Tityus serrulatus venom results in a new naturally occurring thimet oligopeptidase inhibitor. Peptides, 2013, 40, 30-33.	1.2	5
116	The Ex vivo Eye Irritation Test (EVEIT) model as a mean of improving venom ophthalmia understanding. Toxicon, 2018, 150, 253-260.	0.8	5
117	Hydroquinone Exposure Worsens Rheumatoid Arthritis through the Activation of the Aryl Hydrocarbon Receptor and Interleukin-17 Pathways. Antioxidants, 2021, 10, 929.	2.2	5
118	Bothrops jararaca Snake Venom Inflammation Induced in Human Whole Blood: Role of the Complement System. Frontiers in Immunology, 2022, 13, .	2.2	5
119	A Mycobacterium leprae Hsp65 Mutant as a Candidate for Mitigating Lupus Aggravation in Mice. PLoS ONE, 2011, 6, e24093.	1.1	4
120	Snake venoms from Angola: Intra-specific variations and immunogenicity. Toxicon, 2018, 148, 85-94.	0.8	4
121	Envenomation by Caterpillars. Toxinology, 2018, , 429-449.	0.2	4
122	Human Chondrocyte Activation by Toxins From Premolis semirufa, an Amazon Rainforest Moth Caterpillar: Identifying an Osteoarthritis Signature. Frontiers in Immunology, 2020, 11, 2191.	2.2	4
123	Cytotoxic and genotoxic effects on human keratinocytes triggered by sphingomyelinase D from Loxosceles venom. Archives of Toxicology, 2020, 94, 3563-3577.	1.9	4
124	Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands. PLoS ONE, 2016, 11, e0146992.	1.1	3
125	Self-Assembled Cationic-Covered Nanoemulsion as A Novel Biocompatible Immunoadjuvant for Antiserum Production Against Tityus serrulatus Scorpion Venom. Pharmaceutics, 2020, 12, 927.	2.0	3
126	Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins, 2021, 13, 256.	1.5	3

Denise V Tambourgi

#	Article	IF	CITATIONS
127	Envenomation by Caterpillars. , 2016, , 1-17.		3
128	A natural carrier effect and the generation of specific antibodies to biologically active peptides. Analytical Biochemistry, 2006, 353, 174-180.	1.1	2
129	Integrative multiomics analysis of Premolis semirufa caterpillar venom in the search for molecules leading to a joint disease. Scientific Reports, 2021, 11, 1995.	1.6	2
130	Autoimmune uveitis: study of treatment therapies. Einstein (Sao Paulo, Brazil), 2010, 8, 117-121.	0.3	1
131	Oral Tolerance Induction by Bothrops jararaca Venom in a Murine Model and Cross-Reactivity with Toxins of Other Snake Venoms. Toxins, 2021, 13, 865.	1.5	1
132	Human complement system activation by a serine protease found in the Premolis semirufa caterpillar venom. Molecular Immunology, 2011, 48, 1704.	1.0	0
133	Premolis semirufa envenomation, disease affecting rubber tappers of the Amazon: Searching for caterpillar-bristles toxic components acting on the complement system. Immunobiology, 2012, 217, 1194.	0.8	0
134	170. Identification of a Dynorphin-Degrading Metallopeptidase Releasing Leu-Enkephalin in Brazilian Tityus spp. Scorpion Venoms. Toxicon, 2012, 60, 182-183.	0.8	0
135	Mechanism of neutrophil dysfunction: Neutrophil serine proteases cleave and inactivate the C5a receptor. Molecular Immunology, 2013, 56, 254.	1.0	0
136	Envenomation by African adders (Bitis ssp.) induces complement activation. Molecular Immunology, 2013, 56, 259-260.	1.0	0
137	Preface to the Special Issue for the XXV International Complement Workshop. Molecular Immunology, 2014, 61, 55.	1.0	0
138	Loxosceles Sphingomyelinase D induces leukocyte activation which is partially complement dependent: Similarities to endotoxic shock. Toxicon, 2016, 116, 77.	0.8	0
139	Role of the complement system in the inflammatory process caused by a class P1 metalloproteinase from Bothrops pirajai venom: Analysis in the ex vivo model of human whole blood. Molecular Immunology, 2017, 89, 166.	1.0	0
140	Complement genes expression by human keratinocytes and their modulation by a necrotizing venom. Molecular Immunology, 2018, 102, 217.	1.0	0
141	P-MAPA, a Fungi-Derived Immunomodulatory Compound, Induces a Proinflammatory Response in a Human Whole Blood Model. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	0
142	Searching for the toxic potential of Loxosceles amazonica and Loxosceles willianilsoni spiders' venoms. Toxicon, 2021, 191, 1-8.	0.8	0
143	Analysis of Spleen Cells in Susceptible and Resistant Mice with Experimental Lagochilascariosis. ISRN Parasitology, 2013, 2013, 1-8.	0.6	0
144	Non-Cobra Venom Factor Venom Components Acting on Complement Proteins. , 2015, , 1-12.		0

#	Article	IF	CITATIONS
145	Non-Cobra Venom Factor Venom Components Acting on Complement Proteins. , 2017, , 405-415.		Ο
146	Toxicon and Toxicon: X – 2022 and beyond. Toxicon, 2022, 209, A1-A2.	0.8	0