
Klaus Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088904/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycotoxins in Serum and 24â€h Urine of Vegans and Omnivores from the Risks and Benefits of a Vegan Diet (RBVD) Study. Molecular Nutrition and Food Research, 2022, 66, e2100874.	3.3	11
2	Amino acid intake and plasma concentrations and their interplay with gut microbiota in vegans and omnivores in Germany. European Journal of Nutrition, 2022, 61, 2103-2114.	3.9	18
3	Levels of 2,3-dihydroxypropyl mercapturic acid (DHPMA) in human urine do not reflect the exposure to 3-chloro-1,2-propanediol (3-MCPD) or glycidol. Environmental Research, 2022, 211, 112977.	7.5	4
4	Nutritional Intake and Biomarker Status in Strict Raw Food Eaters. Nutrients, 2022, 14, 1725.	4.1	4
5	Dietary and Plasma Phospholipid Profiles in Vegans and Omnivores—Results from the RBVD Study. Nutrients, 2022, 14, 2900.	4.1	1
6	Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland. Nutrients, 2022, 14, 2918.	4.1	2
7	Metabolites of 2―and 3â€Monochloropropanediol (2―and 3â€MCPD) in Humans: Urinary Excretion of 2â€Chlorohydracrylic Acid and 3â€Chlorolactic Acid after Controlled Exposure to a Single High Dose of Fatty Acid Esters of 2―and 3â€MCPD. Molecular Nutrition and Food Research, 2021, 65, e2000736.	3.3	8
8	Urinary Excretion of 2/3â€Monochloropropanediol (2/3â€MCPD) and 2,3â€Dihydroxypropylmercapturic Acid (DHPMA) after a Single High dose of Fatty Acid Esters of 2/3â€MCPD and Clycidol: A Controlled Exposure Study in Humans. Molecular Nutrition and Food Research, 2021, 65, e2000735.	3.3	11
9	Vegan Diet and Bone Health—Results from the Cross-Sectional RBVD Study. Nutrients, 2021, 13, 685.	4.1	41
10	Short- and Branched-Chain Fatty Acids as Fecal Markers for Microbiota Activity in Vegans and Omnivores. Nutrients, 2021, 13, 1808.	4.1	27
11	Bioactivation of estragole and anethole leads to common adducts in DNA and hemoglobin. Food and Chemical Toxicology, 2021, 153, 112253.	3.6	11
12	Internal exposure to perfluoroalkyl substances (PFAS) in vegans and omnivores. International Journal of Hygiene and Environmental Health, 2021, 237, 113808.	4.3	17
13	Perfluorobutanoic acid (PFBA): No high-level accumulation in human lung and kidney tissue. International Journal of Hygiene and Environmental Health, 2021, 237, 113830.	4.3	18
14	Detection of a Hemoglobin Adduct ofÂthe Food ContaminantÂFurfuryl Alcohol in Humans: Levels ofÂ <i>N</i> á€((Furanâ€2â€yl)methyl)â€valine in Two EpidemiologicalÂStudies. Molecular Nutrition and Food Research, 2021, 65, e2100584.	3.3	5
15	ls a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	10.3	47
16	Associations between Dietary Patterns and Bile Acids—Results from a Cross-Sectional Study in Vegans and Omnivores. Nutrients, 2020, 12, 47.	4.1	50
17	Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Scientific Reports, 2020, 10, 21736.	3.3	53
18	Levels of the hemoglobin adduct N-(2,3-Dihydroxypropyl)-valine in cord and maternal blood: Prenatal transfer of glycidol in the ENVIRONAGE birth cohort. Toxicology Letters, 2020, 332, 82-87.	0.8	6

KLAUS ABRAHAM

#	Article	IF	CITATIONS
19	Associations of a vegan diet with inflammatory biomarkers. Scientific Reports, 2020, 10, 1933.	3.3	28
20	Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Archives of Toxicology, 2020, 94, 2131-2147.	4.2	102
21	Vitamin and Mineral Status in a Vegan Diet. Deutsches Ärzteblatt International, 2020, 117, 575-582.	0.9	49
22	Detection of N-Acetyl-S-[3′-(4-methoxyphenyl)allyl]-l-Cys (AMPAC) in Human Urine Samples after Controlled Exposure to Fennel Tea: A New Metabolite of Estragole and trans-Anethole. Chemical Research in Toxicology, 2019, 32, 2260-2267.	3.3	10
23	Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB Journal, 2019, 33, 7092-7102.	0.5	60
24	Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Archives of Toxicology, 2019, 93, 987-996.	4.2	19
25	Sustained Human Background Exposure to Acrolein Evidenced by Monitoring Urinary Exposure Biomarkers. Molecular Nutrition and Food Research, 2019, 63, e1900849.	3.3	11
26	Breastfeeding Rates and Programs in Europe. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 400-407.	1.8	113
27	The hemoglobin adduct N-(2,3-dihydroxypropyl)-valine as biomarker of dietary exposure to glycidyl esters: a controlled exposure study in humans. Archives of Toxicology, 2019, 93, 331-340.	4.2	22
28	Exposure to Substances via Food Consumption. , 2019, , 167-359.		1
29	Hemoglobin adducts of furfuryl alcohol in genetically modified mouse models: Role of endogenous sulfotransferases 1a1 and 1d1 and transgenic human sulfotransferases 1A1/1A2. Toxicology Letters, 2018, 295, 173-178.	0.8	10
30	An isotope-dilution UPLC–MS/MS technique for the human biomonitoring of the internal exposure to glycidol via a valine adduct at the N-terminus of hemoglobin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1059, 7-13.	2.3	14
31	A hemoglobin adduct as a biomarker for the internal exposure to the rodent carcinogen furfuryl alcohol. Archives of Toxicology, 2017, 91, 3843-3855.	4.2	8
32	Risks of dioxins resulting from high exposure via breast-feeding?. Archives of Toxicology, 2017, 91, 2703-2704.	4.2	3
33	Undesired Plant-Derived Components in Food. , 2017, , 379-424.		6
34	Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans. Archives of Toxicology, 2016, 90, 559-574.	4.2	71
35	Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Archives of Toxicology, 2013, 87, 1649-1659.	4.2	76
36	Relative oral bioavailability of 3-MCPD from 3-MCPD fatty acid esters in rats. Archives of Toxicology, 2013, 87, 649-659.	4.2	151

Klaus Abraham

#	Article	IF	CITATIONS
37	A probabilistic model for the carry-over of PCDD/Fs from feed to growing pigs. Chemosphere, 2013, 93, 474-479.	8.2	8
38	Hazard characterization of 3-MCPD using benchmark dose modeling: Factors influencing the outcome. European Journal of Lipid Science and Technology, 2012, 114, 1225-1226.	1.5	7
39	Physiologically based toxicokinetic modelling as a tool to assess target organ toxicity in route-to-route extrapolation—The case of coumarin. Toxicology Letters, 2011, 202, 100-110.	0.8	13
40	Risks and benefits of dietary isoflavones for cancer. Critical Reviews in Toxicology, 2011, 41, 463-506.	3.9	140
41	Relative bioavailability of coumarin from cinnamon and cinnamonâ€containing foods compared to isolated coumarin: A fourâ€way crossover study in human volunteers. Molecular Nutrition and Food Research, 2011, 55, 644-653.	3.3	35
42	Toxicological assessment of 3â€chloropropaneâ€1,2â€diol and glycidol fatty acid esters in food. Molecular Nutrition and Food Research, 2011, 55, 509-521.	3.3	174
43	Toxicology and risk assessment of 5â€Hydroxymethylfurfural in food. Molecular Nutrition and Food Research, 2011, 55, 667-678.	3.3	228
44	Toxicology and risk assessment of acrolein in food. Molecular Nutrition and Food Research, 2011, 55, 1277-1290.	3.3	134
45	Toxicology and risk assessment of coumarin: Focus on human data. Molecular Nutrition and Food Research, 2010, 54, 228-239.	3.3	212
46	Quantification of Flavoring Constituents in Cinnamon: High Variation of Coumarin in Cassia Bark from the German Retail Market and in Authentic Samples from Indonesia. Journal of Agricultural and Food Chemistry, 2010, 58, 10568-10575.	5.2	85
47	Zero tolerances in food and animal feed–Are there any scientific alternatives?A European point of view on an international controversy. Toxicology Letters, 2007, 175, 118-135.	0.8	49
48	Acute inhalative exposure assessment: Derivation of guideline levels with special regard to sensitive subpopulations and time scaling. Toxicology, 2005, 214, 256-267.	4.2	14
49	Internal Exposure of Children by Simulated Acute Inhalation of Volatile Organic Compounds: The Influence of Chemical Properties on the Child/Adult Concentration Ratio. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 242-243.	2.5	6
50	Elevated internal exposure of children in simulated acute inhalation of volatile organic compounds: effects of concentration and duration. Archives of Toxicology, 2005, 79, 63-73.	4.2	42
51	Minimal Inflammation, Acute Phase Response and Avoidance of Misclassification of Vitamin A and Iron Status in Infants – Importance of a High-Sensitivity C-Reactive Protein (CRP) Assay. International Journal for Vitamin and Nutrition Research, 2003, 73, 423-430.	1.5	43
52	Severe 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) intoxication: kinetics and trials to enhance elimination in two patients. Archives of Toxicology, 2002, 76, 316-325.	4.2	52
53	Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: Insights into the measurement of hepatic cytochrome P450 1A2 induction*. Clinical Pharmacology and Therapeutics, 2002, 72, 163-174.	4.7	50
54	Evaluation of the age-dependent development of lymphocyte surface receptors in children. Life Sciences, 1998, 62, 1099-1110.	4.3	28

KLAUS ABRAHAM

#	Article	IF	CITATIONS
55	Comparative study on age-dependent development of surface receptors on peripheral blood lymphocytes in children and young nonhuman primates (marmosets). Life Sciences, 1997, 60, 773-785.	4.3	12
56	Intake, Fecal Excretion, and Body Burden of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Breast-Fed and Formula-Fed Infants. Pediatric Research, 1996, 40, 671-679.	2.3	72
57	Persistence of various polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) in hepatic and adipose tissue of marmoset monkeys. Archives of Toxicology, 1990, 64, 431-442.	4.2	44
58	Transfer of various PCDDs and PCDFs via placenta and mother's milk to marmoset offspring. Chemosphere, 1990, 20, 1065-1070.	8.2	18
59	Absorption and tissue distribution of various polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) in the rat. Archives of Toxicology, 1989, 63, 193-202.	4.2	38
60	Elimination of various polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) in rat faeces. Archives of Toxicology, 1989, 63, 75-78.	4.2	18
61	Pharmacokinetics and biological activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Archives of Toxicology, 1988, 62, 359-368.	4.2	191
62	Simultaneous quantification of eight hemoglobin adducts of genotoxic substances by isotope-dilution UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 0, , .	3.7	0