Dan M Meyerstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088818/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Reaction Between Co(II) Complexes and Peroxymonosulfate. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
2	Mechanistic implications of the solvent kinetic isotope effect in the hydrolysis of NaBH4. International Journal of Hydrogen Energy, 2022, 47, 3972-3979.	3.8	8
3	Reactions of methyl, hydroxyl and peroxyl radicals with the DOTA chelating agent used in medical imaging. Free Radical Biology and Medicine, 2022, 180, 134-142.	1.3	5
4	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Environmental Science & Technology, 2022, 56, 2626-2636.	4.6	58
5	DFT Study of the BH ₄ ^{â~`} Hydrolysis on Au(111) Surface. ChemPhysChem, 2022, 23,	1.0	3
6	Sol-gel matrices for the separation of uranyl and other heavy metals. Journal of Environmental Chemical Engineering, 2022, 10, 108142.	3.3	4
7	On the reactions of Cu(II/I)ATP complexes with methyl radicals. Journal of Inorganic Biochemistry, 2022, 234, 111883.	1.5	0
8	What Are the Oxidizing Intermediates in the Fenton and Fenton-like Reactions? A Perspective. Antioxidants, 2022, 11, 1368.	2.2	13
9	Radicals in â€ [~] biologically relevant' concentrations behave differently: Uncovering new radical reactions following the reaction of hydroxyl radicals with DMSO. Free Radical Biology and Medicine, 2021, 162, 555-560.	1.3	11
10	Kinetics of the reaction of H ₂ with Pt ⁰ -nanoparticles in aqueous suspensions monitored by the catalytic reduction of PW ₁₂ O ₄₀ ^{3â^'} . Inorganic Chemistry Frontiers, 2021, 8, 989-995.	3.0	2
11	Redox Properties of CelVDOTA in Carbonated Aqueous Solutions. A Radiolytic and an Electrochemical Study. Journal of Physical Chemistry A, 2021, 125, 1436-1446.	1.1	2
12	Na3[Ru2(µ-CO3)4] as a Homogeneous Catalyst for Water Oxidation; HCO3â^' as a Co-Catalyst. Catalysts, 2021, 11, 281.	1.6	9
13	Advanced sol–gel process for efficient heterogeneous ring-closing metathesis. Scientific Reports, 2021, 11, 12506.	1.6	3
14	Silica Support Affects the Catalytic Hydrogen Evolution by Silver. European Journal of Inorganic Chemistry, 2021, 2021, 3054-3058.	1.0	7
15	Re-examining Fenton and Fenton-like reactions. Nature Reviews Chemistry, 2021, 5, 595-597.	13.8	91
16	The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?. Chemistry - A European Journal, 2021, 27, 15936-15943.	1.7	10
17	Calculating the adsorption energy of a charged adsorbent in a periodic metallic system – the case of BH ₄ ^{â^²} hydrolysis on the Ag(111) surface. Physical Chemistry Chemical Physics, 2021, 23, 25667-25678.	1.3	12
18	"Doing More with Less― Ni(II)@ORMOSIL, a Novel Sol-Gel Pre-Catalyst for the Reduction of Nitrobenzene. Catalysts, 2021, 11, 1391.	1.6	5

#	Article	IF	CITATIONS
19	Cobalt Carbonate as an Electrocatalyst for Water Oxidation. Chemistry - A European Journal, 2020, 26, 711-720.	1.7	12
20	ORMOSIL-entrapped copper complex as electrocatalyst for the heterogeneous de-chlorination of alkyl halides. Inorganica Chimica Acta, 2020, 500, 119225.	1.2	7
21	Zero-valent iron nanoparticles entrapped in SiO2 sol-gel matrices: A catalyst for the reduction of several pollutants. Catalysis Communications, 2020, 133, 105819.	1.6	12
22	On the mechanism of reduction of M(H ₂ O) _m ⁿ⁺ by borohydride: the case of Ag(H ₂ O) ₂ ⁺ . Nanoscale, 2020, 12, 1657-1672.	2.8	13
23	Reductive Dechlorination of Chloroacetamides with NaBH4 Catalyzed by Zero Valent Iron, ZVI, Nanoparticles in ORMOSIL Matrices Prepared via the Sol-Gel Route. Catalysts, 2020, 10, 986.	1.6	3
24	The Role of Carbonate in Catalytic Oxidations. Accounts of Chemical Research, 2020, 53, 2189-2200.	7.6	78
25	On the Differences in the Mechanisms of Reduction of AuCl ₂ [–] and Ag(H ₂ O) ₂ ⁺ with BH ₄ [–] . Journal of Physical Chemistry A, 2020, 124, 10765-10776.	1.1	6
26	New insights into HER catalysis: the effect of nano-silica support on catalysis by silver nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 6401-6405.	1.3	9
27	The Fell(citrate) Fenton reaction under physiological conditions. Journal of Inorganic Biochemistry, 2020, 206, 111018.	1.5	36
28	The reactions of the Cu(II)-nitrilotris(methylenephosphonic acid) complex with alkyl radicals in aqueous solutions. Inorganica Chimica Acta, 2020, 511, 119759.	1.2	0
29	Plausible roles of carbonate in catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 343-360.	0.4	14
30	On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. Journal of Coordination Chemistry, 2019, 72, 3445-3457.	0.8	3
31	Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radical Biology and Medicine, 2019, 131, 1-6.	1.3	79
32	A chemically modified silica-gel as an ion exchange resin for pre-concentration of actinides and lanthanides. Inorganica Chimica Acta, 2019, 486, 642-647.	1.2	12
33	Carbonate and carbonate anion radicals in aqueous solutions exist as CO ₃ (H ₂ O) ₆ ^{2â^²} and CO ₃ (H ₂ O) ₆ Ë™ ^{â²²} respectively: the crucial role of the inner hydration sphere of anions in explaining their properties. Physical Chemistry Chemical Physics,	1.3	26
34	Israel Chemical Society Prizes: Y. Apeloig, S. Shaik, J.â€M.â€L. Martin, D. Meyerstein, S. Ruthstein, and M.â€l vanâ€derâ€Boom / NAS Award in Chemical Sciences: J.â€A. Doudna / Remsen Award and Ralphâ€N. Adam C.â€A. Mirkin. Angewandte Chemie - International Edition, 2018, 57, 4833-4834.		0
35	Mechanistic Studies on the Role of [Cu ^{ll} (CO ₃) _{<i>n</i>}] ^{2â^²2<i>n</i>} as a Water Oxidation Catalyst: Carbonate as a Nonâ€innocent Ligand. Chemistry - A European Journal, 2018, 24, 1088-1096.	1.7	21
36	The Chemical Properties of Hydrogen Atoms Adsorbed on M ⁰ â€Nanoparticles Suspended in Aqueous Solutions: The Case of Ag ⁰ â€NPs and Au ⁰ â€NPs Reduced by BD ₄ ^{â^'} . Angewandte Chemie, 2018, 130, 16763-16766.	1.6	3

#	Article	IF	CITATIONS
37	The Chemical Properties of Hydrogen Atoms Adsorbed on M ⁰ â€Nanoparticles Suspended in Aqueous Solutions: The Case of Ag ⁰ â€NPs and Au ⁰ â€NPs Reduced by BD ₄ ^{â^'} . Angewandte Chemie - International Edition, 2018, 57, 16525-16528.	7.2	18
38	Mechanisms of Reduction of M(H ₂ O) _{<i>k</i>} ^{<i>n</i>+} To Form M°-Nano-Particles in Aqueous Solutions Differs from That Commonly Assumed: The Reduction of Ag(H ₂ O) ₂ ⁺ by H ₂ . Journal of Physical Chemistry C, 2018, 122, 25043-25050.	1.5	5
39	Copper(II) catalyses the reduction of perchlorate by both formaldehyde and by dihydrogen in aqueous solutions. Journal of Coordination Chemistry, 2018, 71, 2905-2912.	0.8	2
40	Sol-gel entrapped Au0- and Ag0-nanoparticles catalyze reductive de-halogenation of halo-organic compounds by BH4â^. Applied Catalysis B: Environmental, 2018, 239, 450-462.	10.8	22
41	Polyoxometalates entrapped in sol-gel matrices as electron exchange columns and catalysts for the reductive de-halogenation of halo-organic acids in water. Journal of Coordination Chemistry, 2018, 71, 3180-3193.	0.8	5
42	Reactions of Aliphatic Carbon-Centered and Aliphatic-Peroxyl Radicals with Transition Metal Complexes as a Plausible Source for Biological Damage Induced by Radical Processes. , 2018, , 41-77.		0
43	Reductive Dehalogenation of Monobromo―and Tribromoacetic Acid by Sodium Borohydride Catalyzed by Gold Nanoparticles Entrapped in Sol–Gel Matrices Follows Different Pathways. European Journal of Inorganic Chemistry, 2017, 2017, 1510-1515.	1.0	23
44	Halo-organic pollutants: The effect of an electrical bias on their decomposition mechanism on porous iron electrodes. Applied Catalysis B: Environmental, 2017, 210, 255-262.	10.8	11
45	The role of carbonate in electro-catalytic water oxidation by using Ni(1,4,8,11-tetraazacyclotetradecane) ²⁺ . Dalton Transactions, 2017, 46, 10774-10779.	1.6	27
46	Pd0 - and Au0 -Nanoparticles Catalyze the Reduction of Perchlorate by ·C(CH3)2 OH Radicals. European Journal of Inorganic Chemistry, 2017, 2017, 3655-3660.	1.0	7
47	Bromate reduction by an electron exchange column. Chemical Engineering Journal, 2017, 330, 419-422.	6.6	11
48	Resistance Improvement of Aluminum Surface to Corrosion Through Reactions With Fluoride Ions. Journal of Nuclear Engineering and Radiation Science, 2017, 3, .	0.2	0
49	Homogeneous and heterogeneous electrocatalytic reduction of halo-organic compounds by (NillLi)2+ (Li= tetraaza-macrocyclic ligand) in aqueous solutions. Inorganica Chimica Acta, 2017, 466, 502-509.	1.2	7
50	BH ₄ [–] â€Promoted, Radicalâ€Initiated, Catalytic Oxidation of (CH ₃) ₂ SO by N ₂ O in Aqueous Solution. European Journal of Inorganic Chemistry, 2016, 2016, 1161-1164.	1.0	1
51	The plausible role of carbonate in photo-catalytic water oxidation processes. Physical Chemistry Chemical Physics, 2016, 18, 11069-11072.	1.3	16
52	Polyoxometalates entrapped in sol–gel matrices for reducing electron exchange column applications. Journal of Coordination Chemistry, 2016, 69, 3449-3457.	0.8	6
53	Effect of Hydrogen Pretreatment of Platinum Nanoparticles on their Catalytic Properties: Reactions with Alkyl Radicals – A Mechanistic Study. ChemCatChem, 2016, 8, 2761-2764.	1.8	12
54	Electrocatalytic Oxidation of Amines by NiÂ{1,4,8,11â€ŧetraazacyclotetradecane) ²⁺ Entrapped in Sol–Gel Electrodes. European Journal of Inorganic Chemistry, 2016, 2016, 440-440.	1.0	0

#	Article	IF	CITATIONS
55	The reaction between the peroxide VO(η ² -O ₂)(pyridine-2-carboxylate)·2H ₂ O and Fe ^{II} _{aq} is not a Fenton-like reaction. Journal of Coordination Chemistry, 2016, 69, 1722-1729.	0.8	3
56	Different oxidation mechanisms of Mn ^{II} (polyphosphate) _n by the radicals and. Journal of Coordination Chemistry, 2016, 69, 1709-1721.	0.8	6
57	Penta-glycine copper(II) complexes in slightly alkaline solutions. Inorganica Chimica Acta, 2016, 450, 211-215.	1.2	3
58	Electrocatalytic Oxidation of Amines by NiÂ{1,4,8,11â€ŧetraazacyclotetradecane) ²⁺ Entrapped in Sol–Gel Electrodes. European Journal of Inorganic Chemistry, 2016, 2016, 459-463.	1.0	6
59	Coating Platinum Nanoparticles with Methyl Radicals: Effects on Properties and Catalytic Implications. Chemistry - A European Journal, 2015, 21, 19000-19009.	1.7	14
60	Design of a ligand suitable for sensitive uranyl analysis in aqueous solutions. Journal of Coordination Chemistry, 2015, 68, 3079-3087.	0.8	1
61	Plausible Mechanisms of the Fenton-Like Reactions, M = Fe(II) and Co(II), in the Presence of RCO ₂ [–] Substrates: Are OH [•] Radicals Formed in the Process?. Journal of Physical Chemistry A, 2015, 119, 4200-4206.	1.1	31
62	Is Measuring OH [.] Radical Scavenging a Reasonable Measurement of Antioxidant Properties?. Israel Journal of Chemistry, 2014, 54, 279-283.	1.0	6
63	On the Mechanism of Reduction of Maleate Ions by NilComplexes with Tetraazamacrocyclic Ligands in Aqueous Solutions. European Journal of Inorganic Chemistry, 2014, 2014, 932-940.	1.0	2
64	Covalent binding of a nickel macrocyclic complex to a silica support: towards an electron exchange column. Dalton Transactions, 2014, 43, 103-110.	1.6	6
65	The effect of the nano-silica support on the catalytic reduction of water by gold, silver and platinum nanoparticles – nanocomposite reactivity. Physical Chemistry Chemical Physics, 2014, 16, 15422-15429.	1.3	21
66	The role of carbonate as a catalyst of Fenton-like reactions in AOP processes: CO ₃ Ë™ ^{â^'} as the active intermediate. Chemical Communications, 2014, 50, 13096-13099.	2.2	30
67	Three H2O2 molecules are involved in the "Fenton-like―reaction between Co(H2O)62+ and H2O2. Dalton Transactions, 2014, 43, 9111.	1.6	29
68	Pentaglycine–Ni ^{II} Complex: From Kinetics to Structure. European Journal of Inorganic Chemistry, 2013, 2013, 3191-3194.	1.0	2
69	Comment on the section: "Antioxidant measurements and hydroxyl radical scavenging activity―in synthesis, characterization, DNA binding, and antioxidant activities of four copper(II) complexes containing N-(3-hydroxybenzyl)-amino amide ligands, by Zhi Li-Hua, Wu Wei-Na, Wang Yuan, Sun Guang, J. Coord, Chem., 66, 227 (2013), Journal of Coordination Chemistry, 2013, 66, 2076-2078.	0.8	10
70	Pyrophosphate as a stabilizer of Ni(III) ions in aqueous solutions. Inorganica Chimica Acta, 2013, 405, 72-76.	1.2	7
71	The mechanism of the polymer-induced drag reduction in blood. Colloids and Surfaces B: Biointerfaces, 2013, 103, 354-359.	2.5	11
72	The "Fenton like―reaction of MoO43â^' involves two H2O2 molecules. Dalton Transactions, 2013, 42, 16666.	1.6	28

#	Article	IF	CITATIONS
73	H/D Kinetic Isotope Effect as a Tool to Elucidate the Reaction Mechanism of Methyl Radicals with Glycine in Aqueous Solutions. Journal of Physical Chemistry A, 2013, 117, 13996-13998.	1.1	5
74	ions do not catalyze the decomposition of peroxomonosulfate. Journal of Coordination Chemistry, 2013, 66, 4355-4362.	0.8	1
75	The role of the cation in the oxygen isotopic exchange in crystalline sulfate salt hydrates. Adsorption, 2013, 19, 821-833.	1.4	0
76	The Cu(i) catalyzed Meerwein reaction in aqueous solutions proceeds via a radical mechanism. The effect of several ligands. Dalton Transactions, 2013, 42, 4985.	1.6	3
77	Erythrocyte swelling and membrane hole formation in hypotonic media as studied by conductometry. Physiological Measurement, 2013, 34, 139-150.	1.2	3
78	Comment on "Mechanism of Pt ^{IV} Sonochemical Reduction in Formic Acid Media and Pure Water― Chemistry - A European Journal, 2013, 19, 17210-17212.	1.7	2
79	Catalytic hydrogen oxidation using zeolite RHO modified by silver nanoparticles. Glass Physics and Chemistry, 2012, 38, 455-459.	0.2	9
80	The redox chemistry of copper tetraphenylporphyrin revisited. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1124-1131.	0.4	7
81	The chemistry of monovalent copper in aqueous solutions. Advances in Inorganic Chemistry, 2012, 64, 219-261.	0.4	19
	On the Lifetime of the Transients (NP)(CH ₃) _{<i>n</i>} (NP=Ag ⁰ ,) Tj ETC	0	
82	and Nanoparticles Suspended in Aqueous Solutions. Chemistry - A European Journal, 2012, 18, 4699-4705.	1.7	22
83	Coating Pt ⁰ Nanoparticles with Methyl Groups: The Reaction Between Methyl Radicals and Pt ⁰ NPs Suspended in Aqueous Solutions. Chemistry - A European Journal, 2012, 18, 6733-6736.	1.7	14
84	Computational Investigations into Hydrogen-Atom Abstraction from Rhodium Hydride Complexes by Methyl Radicals in Aqueous Solution. European Journal of Inorganic Chemistry, 2011, 2011, 4901-4905.	1.0	1
85	Electron Exchange Columns through Entrapment of a Nickel Cyclam in a Sol–Gel Matrix. Chemistry - A European Journal, 2011, 17, 5188-5192.	1.7	8
86	On the Reactions of Methyl Radicals with TiO ₂ Nanoparticles and Granular Powders Immersed in Aqueous Solutions. Chemistry - A European Journal, 2011, 17, 9226-9231.	1.7	13
87	Inside Cover: Electron Exchange Columns through Entrapment of a Nickel Cyclam in a Sol–Gel Matrix (Chem. Eur. J. 18/2011). Chemistry - A European Journal, 2011, 17, 4930-4930.	1.7	0
88	The one-electron reduction of a multi-centred iron(III) polyoxometallate. A pulse radiolysis study. Inorganic Chemistry Communication, 2011, 14, 1390-1392.	1.8	3
89	The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood. Colloids and Surfaces B: Biointerfaces, 2011, 82, 518-525.	2.5	5
90	The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction. Journal of Inorganic Biochemistry, 2011, 105, 669-674.	1.5	30

#	Article	IF	CITATIONS
91	The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network. Colloids and Surfaces B: Biointerfaces, 2010, 75, 224-229.	2.5	20
92	The Effect of an Electrical Bias on the Mechanism of Decomposition of Transients with Metal–Carbon σ Bonds. European Journal of Inorganic Chemistry, 2010, 2010, 3252-3255.	1.0	5
93	Substantial Inverse Isotope Effects in the Hydrogen Atom Abstraction from [(L)ClRh ^{III} H/D] ⁺ Macrocyclic Complexes by Methyl Radicals in Aqueous Solutions. Chemistry - A European Journal, 2010, 16, 460-463.	1.7	2
94	Is it always correct to use the Marcus cross relation for calculations of electron self-exchange rates?. Inorganica Chimica Acta, 2010, 363, 737-740.	1.2	3
95	Anions as stabilizing ligands for Ni(III)(cyclam) in aqueous solutions. Inorganica Chimica Acta, 2010, 363, 2819-2823.	1.2	13
96	On the mechanisms of the reaction of dodecatungstophosphate with alkyl radicals in aqueous solutions. Inorganica Chimica Acta, 2010, 363, 4202-4206.	1.2	3
97	The mechanism of erythrocyte sedimentation. Part 1: Channeling in sedimenting blood. Colloids and Surfaces B: Biointerfaces, 2010, 75, 214-223.	2.5	32
98	On the reaction mechanism of MoS42â^' with nitric oxide. Inorganic Chemistry Communication, 2010, 13, 589-592.	1.8	0
99	On the mechanism of reduction of maleate by a Co(I) complex with a macrocylic ligand in aqueous solutions. Journal of Coordination Chemistry, 2010, 63, 2528-2541.	0.8	3
100	Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide. Physical Chemistry Chemical Physics, 2010, 12, 12862.	1.3	10
101	On the mechanism of reduction of maleate and fumarate by NiI(1,4,8,11-tetraazacyclotetradecane)+ in aqueous solutions. Dalton Transactions, 2010, 39, 823-833.	1.6	7
102	A Mechanistic Study of the Effects of Antioxidants on the Formation of Malondialdehyde‣ike Products in the Reaction of Hydroxyl Radicals with Deoxyribose. Chemistry - A European Journal, 2009, 15, 7717-7723.	1.7	9
103	New Mechanistic Aspects of the Fenton Reaction. Chemistry - A European Journal, 2009, 15, 8303-8309.	1.7	98
104	Irregular Changes in the Structure of Flowing Blood at Low Flow Conditions. Annals of Biomedical Engineering, 2009, 37, 2488-2496.	1.3	3
105	A novel Celll-cyclam type complex and its redox chemistry in aqueous solutions. Research on Chemical Intermediates, 2009, 35, 543-554.	1.3	0
106	A new chelate ligand designed for the uranyl ion. Coordination Chemistry Reviews, 2009, 253, 2049-2055.	9.5	8
107	Reactions of Alkyl Peroxyl Radicals with Metal Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2009, 113, 3281-3286.	1.5	10
108	Superoxide dismutase activity of corrole metal complexes. Dalton Transactions, 2009, , 7879.	1.6	59

#	Article	IF	CITATIONS
109	Neonatal blood is more resistant to oxidative stress induced by stable nitroxide radicals than adult blood. Archives of Gynecology and Obstetrics, 2008, 277, 233-237.	0.8	4
110	Mechanism of the Reaction of Radicals with Peroxides and Dimethyl Sulfoxide in Aqueous Solution. Chemistry - A European Journal, 2008, 14, 5880-5889.	1.7	55
111	Reduction of Ethylene by Ni ^I (cyclam) ⁺ in Aqueous Solutions. Journal of Physical Chemistry A, 2008, 112, 12769-12771.	1.1	7
112	Measured Rates of Fluoride/Metal Association Correlate with Rates of Superoxide/Metal Reactions for Fe ^{III} EDTA(H ₂ O) ⁻ and Related Complexes. Journal of the American Chemical Society, 2008, 130, 1727-1734.	6.6	17
113	Protective effect of free-radical scavengers on corneal endothelial damage in phacoemulsification. Journal of Cataract and Refractive Surgery, 2007, 33, 310-315.	0.7	36
114	Mechanism of reaction of alkyl radicals with (NiIIL)2+ complexes in aqueous solutions. Dalton Transactions, 2007, , 3959.	1.6	9
115	Effect of Silica-Supported Silver Nanoparticles on the Dihydrogen Yields from Irradiated Aqueous Solutions. Journal of Physical Chemistry C, 2007, 111, 10461-10466.	1.5	23
116	Ligand Effects on the Chemical Activity of Copper(I) Complexes: Outer- and Inner-Sphere Oxidation of CuIL. European Journal of Inorganic Chemistry, 2007, 2007, 530-536.	1.0	11
117	Reductive Nitrosation of Peptides Ligated to Highâ€Valent Metal Cations. European Journal of Inorganic Chemistry, 2007, 2007, 5029-5031.	1.0	11
118	Reductive nitrosation of methyl amine ligated to a nickel(III) complex. Inorganic Chemistry Communication, 2007, 10, 57-60.	1.8	7
119	Reactions of alkyl-radicals with gold and silver nanoparticles in aqueous solutions. Physical Chemistry Chemical Physics, 2006, 8, 3552.	1.3	46
120	β-Elimination in the Reactions of ·CR1R2CR3R4X Radicals with Metal Powders Immersed in Aqueous Solutions. Inorganic Chemistry, 2006, 45, 7389-7396.	1.9	8
121	Antioxidant properties of bucillamine: Possible mode of action. Biochemical and Biophysical Research Communications, 2006, 349, 1171-1175.	1.0	42
122	Reduction of maleate and fumarate by the anion radical. Tetrahedron Letters, 2006, 47, 1093-1096.	0.7	10
123	Pyrophosphate and ATP as Stabilizing Ligands for High-Valent Nickel Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 523-525.	1.0	2
124	Mechanism of reaction of peroxomethyl radicals with copper(II)(glycine)2 and copper(II)(glycylglycylglycine) in aqueous solutions. Inorganica Chimica Acta, 2005, 358, 2199-2206.	1.2	10
125	Formation of an observable intermediate during the reduction of [Co(III)(NH3)5CN]2+ by CR1R2(OH) radicals. Inorganica Chimica Acta, 2005, 358, 2821-2826.	1.2	0
126	Oxidation of organic substrates in aerated aqueous solutions by the Fenton reagent. Coordination Chemistry Reviews, 2005, 249, 1937-1943.	9.5	72

#	Article	IF	CITATIONS
127	Reduction of CCl4 by Iron Powder in Aqueous Solution. European Journal of Inorganic Chemistry, 2005, 2005, 1227-1229.	1.0	7
128	The Fenton Reaction in Aerated Aqueous Solutions Revisited. European Journal of Inorganic Chemistry, 2005, 2005, 2875-2880.	1.0	21
129	The Redox Chemistry of (N1-[3-(2-aminoethylimino)-1,1-dimethylbutyl]ethane-1,2-diamine)nickel(II) Perchlorate, NillL1(ClO4)2, in Aqueous Solutions -A Pulse Radiolytic and an Electrochemical Study. European Journal of Inorganic Chemistry, 2005, 2005, 4335-4340.	1.0	0
130	Mechanism of Isomerization of Ni(cyclam) in Aqueous Solutions. European Journal of Inorganic Chemistry, 2005, 2005, 4997-5004.	1.0	5
131	Redox Chemistry of Nickel Complexes in Aqueous Solutions. ChemInform, 2005, 36, no.	0.1	0
132	Acoustic cavitation in phacoemulsification and the role of antioxidants. Ultrasound in Medicine and Biology, 2005, 31, 1123-1129.	0.7	17
133	Reactions of alkyl radicals with metal powders immersed in aqueous solutions. Glass Physics and Chemistry, 2005, 31, 115-118.	0.2	3
134	Redox Chemistry of Nickel Complexes in Aqueous Solutions. Chemical Reviews, 2005, 105, 2609-2626.	23.0	93
135	Silver(II) Complexes of Tetraazamacrocycles: Studies on e.p.r. and Electron Transfer Kinetics with Thiosulfate Ion. Transition Metal Chemistry, 2004, 29, 463-470.	0.7	20
136	Oxidation of CH3NH2 and (CH3)2NH by NiIII(cyclam)(H2O)23+ in Aqueous Solutions. European Journal of Inorganic Chemistry, 2004, 2004, 4002-4005.	1.0	5
137	Mechanism of Reduction of the Nitrite Ion by Cul Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 3675.	1.0	15
138	Radical Catalyzed Debromination of Bromo-Alkanes by Formate in Aqueous Solutions via a Hydrogen Atom Transfer Mechanism ChemInform, 2004, 35, no.	0.1	0
139	Radical catalyzed debromination of bromo-alkanes by formate in aqueous solutions via a hydrogen atom transfer mechanism. Tetrahedron Letters, 2004, 45, 989-992.	0.7	9
140	Detection of nitric oxide from pig trachea by a fluorescence method. Analytical Biochemistry, 2004, 326, 139-145.	1.1	18
141	PROPERTIES OF TRANSITION METAL COMPLEXES WITH METAL–CARBON BONDS IN AQUEOUS SOLUTIONS AS STUDIED BY PULSE RADIOLYSIS. Advances in Inorganic Chemistry, 2004, 55, 271-313.	0.4	17
142	THE POSSIBLE PROTECTIVE EFFECTS OF ANTIOXIDANTS IN ULTRASOUND-ASSISTED LIPOPLASTY. Plastic and Reconstructive Surgery, 2004, 113, 788-789.	0.7	0
143	Mechanism of Reduction of 2,2-Dibromomethyl-1,3-propanediol by Nil-Tetraazamacrocyclic Complexes in Aqueous Solutionâ [~] A Pulse Radiolysis and Electrochemical Study. European Journal of Inorganic Chemistry, 2003, 2003, 4105-4109.	1.0	8
144	Reaction of Methyl Radicals with Metal Powders Immersed in Aqueous Solutions. European Journal of Inorganic Chemistry, 2003, 2003, 4227-4233.	1.0	35

#	Article	IF	CITATIONS
145	Reduction of carbon dioxide during the synthesis of metal nano-particles in water. Inorganic Chemistry Communication, 2003, 6, 1266-1268.	1.8	2
146	Reduction of the Allylic Substituents in Nil(1,8-dipropenyl-1,4,8,11-tetraazacyclotetradecane)+by the Central Ni(I) in Aqueous Solutions. Inorganic Chemistry, 2003, 42, 7156-7161.	1.9	4
147	The Reduction of a Nitroxide Spin Label as a Probe of Human Blood Antioxidant Properties. Free Radical Research, 2003, 37, 301-308.	1.5	31
148	Cu(i)(2,5,8,11-tetramethyl-2,5,8,11-tetraazadodecane)+as a catalyst for Ullmann's reaction. Dalton Transactions, 2003, , 2024-2028.	1.6	16
149	Solvation Largely Accounts for the Effect ofN-Alkylation on the Properties of Nickel(II/I) and Chromium(III/II) Cyclam Complexes. Inorganic Chemistry, 2002, 41, 2927-2935.	1.9	40
150	Catalyzed Autoxidation of Hydrogensulfite by Cobalt(II) (2,3,9,10-tetramethyl-1,4,8,11-tetraaza-cyclotetradeca-1,3,8,10-tetraene) (H 2 O) 2 2+. Supramolecular Chemistry, 2002, 14, 221-229.	1.5	1
151	Kinetics of erythrocyte swelling and membrane hole formation in hypotonic media. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1558, 119-132.	1.4	30
152	Effect of ionic strength on the binding of ascorbate to albumin. Biochimica Et Biophysica Acta - General Subjects, 2002, 1571, 239-244.	1.1	11
153	Copper(I) as a Homogeneous Catalyst for the Ullmann Reaction in Aqueous Solutions â^ The Transformation of 2-Bromobenzoate into Salicylate. European Journal of Inorganic Chemistry, 2002, 2002, 1226-1234.	1.0	19
154	The Case of (2,3,9,10-Tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)(H2O)Colllâ [^] OOR2+ (R =) Chemistry, 2002, 2002, 2427-2432.	Tj ETQq0 1.0	0 0 rgBT /Ove 5
155	Kinetics and Reaction Mechanisms of Complexes with Cobaltâ^'Carbon σ Bonds of the Type {(NH3)5Coâ^'R}n+ in Aqueous Solutions, a Pulse Radiolysis Study. European Journal of Inorganic Chemistry, 2002, 2002, 87-92.	1.0	20
156	Ligand Effects on the Reactivity of CulL Complexes Towards Cl3CCO2â^'. European Journal of Inorganic Chemistry, 2002, 2002, 423-429.	1.0	18
157	Reactions of peroxyl radicals with Fe(H2O)62+. Journal of Inorganic Biochemistry, 2002, 91, 199-204.	1.5	33
158	Acoustic cavitation in phacoemulsification: chemical effects, modes of action and cavitation index. Ultrasound in Medicine and Biology, 2002, 28, 775-784.	0.7	39
159	Mechanism of reaction of alkyl radicals with copper(II)(glycylglycylglycine) in aqueous solutions. Inorganica Chimica Acta, 2002, 339, 283-291.	1.2	14
160	Magnetic resonance studies on ascorbate binding to albumin. , 2002, , 471-476.		0
161	Effect of albumin on the kinetics of ascorbate oxidation. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 53-60.	1.1	22
162	High-Pressure Pulse-Radiolysis Study of the Formation and Decomposition of Complexes with Ironâ^'Carbon σ Bonds: Mechanistic Comparison for Different Metal Centers. Inorganic Chemistry, 2001, 40, 4966-4970.	1.9	8

#	Article	IF	CITATIONS
163	EPR analysis of radicals generated in ultrasound-assisted lipoplasty simulated environment. Ultrasound in Medicine and Biology, 2001, 27, 851-859.	0.7	15
164	The effect of zinc–bromine interactions on electrophilic bromination in concentrated ZnBr2 solutions. Inorganic Chemistry Communication, 2001, 4, 705-707.	1.8	8
165	Ligand Effects on the Kinetics of the Reversible Binding of NO to Selected Aminocarboxylato Complexes of Iron(II) in Aqueous Solution. European Journal of Inorganic Chemistry, 2001, 2001, 2317-2325.	1.0	53
166	Comproportionation and redox catalyzed isomerization of Cu(II)(1R,4S,8R,11S-1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)2+ in aqueous solutions. Inorganica Chimica Acta, 2001, 324, 65-72.	1.2	26
167	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 179-184.	1.6	4
168	Oxidation of Ascorbate by Ni(III) Complexes with Tetraaza-macrocyclic Ligands in Neutral Aqueous Solutions. A Pulse-Radiolysis Study. Supramolecular Chemistry, 2001, 13, 325-332.	1.5	6
169	Syntheses, Structures and Properties of Copper(I) and Copper(II) Complexes of the LigandN,N′-Bis[2′-(dimethylamino)ethyl]-N,N′-dimethylethane1,2-diamine (Me6trien). European Journal o Inorganic Chemistry, 2000, 2000, 719-726.	f 1.0	22
170	Catalyzed autoxidation of azide by cobalt(II) (2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)2+. Inorganica Chimica Acta, 2000, 307, 42-47.	1.2	1
171	On the chemical properties of the transient complexes LmMn+1–OOR. Inorganica Chimica Acta, 2000, 299, 41-46.	1.2	13
172	The reaction mechanism of nitrosothiols with copper(I). Journal of Biological Inorganic Chemistry, 2000, 5, 213-217.	1.1	28
173	Copper-(II) and -(I) co-ordination by hexa-amine ligands of different rigidities. A thermodynamic, structural and electrochemical investigation â€. Dalton Transactions RSC, 2000, , 2383-2391.	2.3	19
174	Mechanistic differences between "reductive―and "oxidative―heterolysis of metal–carbon σ bonds. Dalton Transactions RSC, 2000, , 3356-3359.	2.3	7
175	EPR Measurements corroborate information concerning the nature of (H2O)5CrIII–alkyl complexes. Dalton Transactions RSC, 2000, , 3082-3085.	2.3	18
176	Evidence for Adduct Formation between ONOO- and CO2 from High-Pressure Pulse Radiolysis. Journal of Physical Chemistry A, 2000, 104, 9712-9714.	1.1	10
177	High-Pressure Pulse Radiolysis as a Tool in the Study of Transition Metal Reaction Mechanisms. Accounts of Chemical Research, 2000, 33, 207-214.	7.6	42
178	Design of Ligands Which Improve Cu(I) Catalysis. Industrial & Engineering Chemistry Research, 2000, 39, 3536-3540.	1.8	15
179	Syntheses, Structures and Properties of Copper(I) and Copper(II) Complexes of the Ligand N,N′-Bis[2′-(dimethylamino)ethyl]-N,N′-dimethylethane1,2-diamine (Me6trien). European Journal of Inorganic Chemistry, 2000, 2000, 719-726.	1.0	1
180	Are M–N bonds indeed inherently weaker when N is a tertiary rather than a primary or secondary nitrogen atom?. Coordination Chemistry Reviews, 1999, 185-186, 141-147.	9.5	88

#	Article	IF	CITATIONS
181	Design of Ligands That Stabilize Cu(I) and Shift the Reduction Potential of the CuII/ICouple Cathodically in Aqueous Solutions. Inorganic Chemistry, 1999, 38, 3484-3488.	1.9	50
182	β-Hydride shift involvement in the acid catalysed decomposition of [(H2O)5CrIII–C(CH3)2OH]2+. Journal of the Chemical Society Dalton Transactions, 1999, , 3805-3808.	1.1	3
183	Complexes of copper(I) with aromatic compounds in aqueous solutions. Journal of the Chemical Society Dalton Transactions, 1999, , 1845-1850.	1.1	19
184	Peroxynitrous Acid Decomposes via Homolysis:  Evidence from High-Pressure Pulse Radiolysis. Journal of Physical Chemistry A, 1999, 103, 6587-6590.	1.1	31
185	Comments on the Mechanism of the "Fenton-Like―Reaction. Accounts of Chemical Research, 1999, 32, 547-550.	7.6	203
186	The oxidation of nickelII(1,4,8,11-tetraazacyclotetradecane) by hydroperoxyl radicals: A pulse radiolysis study. Inorganica Chimica Acta, 1998, 273, 266-269.	1.2	7
187	Monovalent copper as a potential catalyst for formation of acetaldehyde via the migration of methyl radicals to the coordinated carbonyl in the complex (CO)Cull-CH3+. Inorganica Chimica Acta, 1998, 270, 440-445.	1.2	13
188	Cooperative oxidation of edta by Ni(III) and dioxygen. A pulse radiolysis study. Inorganic Chemistry Communication, 1998, 1, 46-48.	1.8	9
189	Palladium(II) co-ordination by linear N-methylated polyamines: a solution and solid-state study. Journal of the Chemical Society Dalton Transactions, 1998, , 1625-1632.	1.1	10
190	Effect of fumarate on the kinetics and reaction mechanism of Cu+aq with dioxygen. Journal of the Chemical Society Dalton Transactions, 1998, , 3663-3666.	1.1	8
191	Effect of Stabilizing Ligands on the Rate of Reaction of CulL with CCl3CO2-in Aqueous Solutions. 1. L = HOOCCHCHCOO Inorganic Chemistry, 1997, 36, 3781-3783.	1.9	12
192	Kinetic stabilization of trivalent nickel complexes with tertiary tetraaza macrocyclic ligands in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1997, , 141-144.	1.1	9
193	Spontaneous Reactions and Reduction by Iodide of Peroxynitrite and Peroxynitrate:  Mechanistic Insight from Activation Parameters. Journal of Physical Chemistry A, 1997, 101, 7114-7118.	1.1	33
194	Mechanisms of Reactions of•NO with Complexes with Metalâ^'Carbon σ-Bonds and with Aliphatic Radicals. Inorganic Chemistry, 1997, 36, 2893-2897.	1.9	3
195	Effect of low blood lead levels on the apparent aggregability of human erythrocytes. Journal of Inorganic Biochemistry, 1997, 67, 169.	1.5	Ο
196	Compact accelerated precipitation softening (CAPS) as pretreatment for membrane desalination II. Lime softening with concomitant removal of silica and heavy metals. Desalination, 1997, 113, 73-84.	4.0	25
197	The effect of N-methylation of tetra-aza-alkane copper complexes on the axial binding of anions. Inorganica Chimica Acta, 1997, 255, 111-115.	1.2	43
198	pH dependence of the stability constants of copper(I) complexes with fumaric and maleic acids in aqueous solutions. Inorganica Chimica Acta, 1997, 261, 29-35.	1.2	24

#	Article	IF	CITATIONS
199	Study of red blood cell aggregation by admittance measurements. Biorheology, 1996, 33, 139-151.	1.2	2
200	Properties of the Nickel(III) Complex with 1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetate in Aqueous Solution. Inorganic Chemistry, 1996, 35, 5127-5131.	1.9	18
201	Copper-(I) and -(II) complexes with tertiary linear polyamines of the type Me2NCH2(CH2NMeCH2)nCH2NMe2(n= 1–4). Journal of the Chemical Society Dalton Transactions, 1996, , 2055-2060.	1.1	25
202	Tertiary-poly-amine ligands as stabilisers of transition metal complexes with uncommon oxidation states. Supramolecular Chemistry, 1996, 6, 275-279.	1.5	27
203	A 1H NMR study of the complex of cobalt(II) with 2,5,8,11-tetramethyl-2,5,8,11-tetraazadodecane in aerated aqueous solutions. Inorganica Chimica Acta, 1995, 235, 5-8.	1.2	18
204	Properties of monovalent nickel complexes with tetraaza-macrocyclic ligands in aqueous solutions. Inorganica Chimica Acta, 1995, 240, 503-514.	1.2	30
205	Conductometric study of erythrocytes during centrifugation. I. Size distribution of erythrocytes. Lipids and Lipid Metabolism, 1995, 1256, 187-193.	2.6	3
206	Conductometric study of erythrocytes during centrifugation. II. Erythrocyte deformability. Lipids and Lipid Metabolism, 1995, 1256, 194-200.	2.6	6
207	Reactions of Low Valent Transition Metal Complexes with Hydrogen Peroxide. Are they "Fenton-Like― or not? 4. The Case of Fe(II)L, L = Edta; Hedta and Tcma. Free Radical Research, 1995, 23, 453-463.	1.5	43
208	Kinetics and Reaction Mechanisms of Copper(I) Complexes with Aliphatic Free Radicals in Aqueous Solutions. A Pulse-Radiolysis Study. Organometallics, 1995, 14, 5670-5676.	1.1	60
209	Mono- and poly-nuclear cryptate complexes of cage-like azamacrocyclic compounds: a thermodynamic and electrochemical approach. Journal of the Chemical Society Dalton Transactions, 1995, , 2377.	1.1	8
210	Use of Hydrophobic Ligands for the Stabilization of Low-Valent Transition Metal Complexes. 1. The Effect of N-Methylation of Linear Tetraazaalkane Ligands on the Properties of Their Copper Complexes. Journal of the American Chemical Society, 1995, 117, 8353-8361.	6.6	108
211	Volumes of activation for β-elimination and related reactions of chromium(III)-alkyl complexes in aqueous solutions. Inorganica Chimica Acta, 1994, 227, 57-61.	1.2	8
212	Methane as the product of reaction of methyl-coenzyme-M with monovalent nickel complexes in aqueous solutions. A model for the in vivo activity of cofactor F430. Inorganica Chimica Acta, 1994, 227, 1-3.	1.2	20
213	Free radicals induced peptide damage in the presence of transition metal ions: A plausible pathway for biological deleterious processes. Free Radical Biology and Medicine, 1994, 17, 11-18.	1.3	16
214	Ligand Interchange Controls Many Oxidations of Divalent First-Row Transition Metal Ions by Free Radicals. Inorganic Chemistry, 1994, 33, 1566-1568.	1.9	44
215	Radiation Damage to the Erythrocyte Membrane: The Effects of Medium and Cell Concentrations. Free Radical Research, 1994, 21, 135-146.	1.5	15
216	Mechanism of Decomposition of CuIII(GlyGlyHis): A Pulse Radiolysis Study. Inorganic Chemistry, 1994, 33, 3255-3260.	1.9	16

#	Article	IF	CITATIONS
217	Acetaldehyde as the product of reaction of the free radical ·CH2CH2NH3+ with Fe(II) complexes. An alternative mechanism for the formation of carbonyl groups in metal catalyzed oxidations of amines Journal of Inorganic Biochemistry, 1993, 51, 225.	1.5	1
218	Stabilization of nickel(III)-1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane by axial binding of anions in neutral aqueous solutions. Inorganica Chimica Acta, 1993, 206, 127-130.	1.2	22
219	The Fenton reagents. Free Radical Biology and Medicine, 1993, 15, 435-445.	1.3	593
220	Effect of N-alkylation on the rate of β-amine elimination from transients with Cull–carbon σ bonds. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4045-4051.	1.7	6
221	Influence of acetate ion on the formation reactions of organochromium(III) species. A rapid-scan and high-pressure pulse-radiolysis study. Journal of the Chemical Society Dalton Transactions, 1993, , 2065.	1.1	3
222	Anion-catalyzed heterolysis of chromium-carbon .sigma. bonds. Effect of different anions, temperature, and pressure. Inorganic Chemistry, 1993, 32, 1997-2000.	1.9	12
223	Free Radical Induced Cleavage of Organic Molecules Catalyzed by Copper Ions — An Alternative Pathway for Biological Damage. , 1993, , 222-235.		4
224	The stabilization of monovalent copper ions by complexation with saturated tertiary amine ligands in aqueous solutions. The case of 2,5,9,12-tetramethyl-2,5,9,12-tetraazatridecane. Journal of the Chemical Society Chemical Communications, 1992, , 397.	2.0	24
225	Mechanism of oxidation of (meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) by hydroperoxyl free radicals in aqueous solutions. A pulse radiolysis study. Inorganic Chemistry, 1992, 31, 2151-2156.	1.9	13
226	High-pressure kinetic evidence for a dissociative interchange (Id) substitution mechanism for aquated chromium(II). Inorganic Chemistry, 1992, 31, 3695-3696.	1.9	40
227	Kinetics and mechanism of the acetate-catalyzed heterolysis of the metal-carbon .sigma. bond of (.alphahydroxyalkyl)chromium(III) complexes. Effects of nonparticipating ligands, temperature, and pressure. Inorganic Chemistry, 1992, 31, 3805-3809.	1.9	16
228	Deamination of β-alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolysis study. Inorganica Chimica Acta, 1992, 192, 87-93.	1.2	28
229	The effect of N-methylation on the spectroscopical and electrochemical properties of 1,4,8,11-tetraazacyclotetradecane chromium(III) complexes. Inorganica Chimica Acta, 1992, 194, 15-22.	1.2	11
230	Hydroxyl radicals induced cleavage of organic and biological molecules catalyzed by transition metal complexes. Journal of Inorganic Biochemistry, 1992, 47, 14.	1.5	0
231	Deamination of 2-methyl-2-propanamine induced by hydroxyl radicals and metal ions: a comparison between the rates of .betaelimination of ammonia and water. Inorganic Chemistry, 1992, 31, 798-803.	1.9	24
232	Hydroxyl radical induced decarboxylation and deamination of 2-methylalanine catalyzed by copper ions. Inorganic Chemistry, 1992, 31, 2439-2444.	1.9	47
233	Stereospecificity of the .betahydroxyl elimination from the (hydroxyalkyl)chromium complex (H2O)5CrIII-CH(CH3)CH(CH3)OH2+. Journal of the American Chemical Society, 1991, 113, 5292-5299.	6.6	19
234	Oxidative homolysis reactions between organochromium macrocycles and dihalide radical anions. Inorganic Chemistry, 1991, 30, 4468-4470.	1.9	10

#	Article	IF	CITATIONS
235	Mechanism of oxidation of the 2-hydroxycyclohexyl radical to cyclopentanecarbaldehyde by copper ions in aqueous solutions. Inorganic Chemistry, 1991, 30, 1849-1854.	1.9	16
236	Determination of the volume of activation of the key reaction steps in the oxidation of phenanthroline-copper(I) by molecular oxygen. The Journal of Physical Chemistry, 1991, 95, 1282-1285.	2.9	38
237	Kinetics of hemolysis of normal and abnormal red blood cells in glycerol-containing media. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1063, 203-208.	1.4	13
238	Reactions of Low Valent Transition-Metal Complexes with Hydrogen Peroxide. Are they "Fenton-Like― or Not? 3. The Case of Fe(II){N(CH ₂ CO ₂) ₃ }(H ₂ O) ₂ . Free Radical Research Communications, 1991, 15, 231-241.	1.8	17
239	Higher stability constants for complexation of low valent, than of high valent, transition metal ions by saturated tertiary amine macrocyclic tetraaza ligands. Inorganica Chimica Acta, 1991, 182, 131-133.	1.2	15
240	Pressure-Assisted Formation of a Cobalt–Carbonσ Bond: A High-Pressure Pulse Radiolysis Study. Angewandte Chemie International Edition in English, 1991, 30, 1158-1160.	4.4	28
241	Druckunterstützte Knüpfung einer Coâ€Câ€Ïfâ€Bindung; eine Pulsradiolyseâ€Untersuchung unter hohem Dr Angewandte Chemie, 1991, 103, 1177-1179.	uck. 1.6	5
242	Effect of pressure on an intramolecular electron-transfer reaction induced by pulse-radiolysis. High Pressure Research, 1991, 6, 287-290.	0.4	1
243	Metal Induced Decarboxylation of Aliphatic Free Radicals. I. Kinetics of the Reactions of Copper(I) and Copper(II) Ions with the 2â€Methylâ€2â€Carboxylicacidâ€Propyl Free Radical in Aqueous Solutions. A Pulse Radiolysis Study. Israel Journal of Chemistry, 1990, 30, 361-368.	1.0	14
244	5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-nickel(II) as a catalyst for oxidations by superoxide in aqueous solutions. A pulse radiolysis study. Inorganica Chimica Acta, 1990, 176, 75-77.	1.2	4
245	Enhancement of the rate of the β-elimination of phosphate from radicals derived from glycerol-2-phosphate by Cu(I)-phenanthroline. A pulse radiolysis study. Free Radical Biology and Medicine, 1990, 9, 371-379.	1.3	7
246	Mechanism of oxidation of aquated copper(II) ions by hydroxyl free radicals. A high-pressure pulse-radiolysis experiment. Inorganica Chimica Acta, 1990, 177, 31-34.	1.2	17
247	A mechanistic study of the copper(II)-peptide-catalyzed superoxide dismutation. A pulse radiolysis study. Journal of the American Chemical Society, 1990, 112, 6489-6492.	6.6	52
248	Oxidation of copper(II) bis(glycinate) by methyl free radicals in aqueous solutions. A pulse-radiolysis study. Inorganic Chemistry, 1990, 29, 5031-5035.	1.9	13
249	The methyl(cyclam)nickel(III) dication in aqueous solutions: determination of the volume of reaction and volume of activation for the homolysis of the nickel-carbon bond. A pulse-radiolysis study. Inorganic Chemistry, 1990, 29, 4156-4158.	1.9	31
250	Observation of a new UV absorption band of some (H2O)5CrIIIî—,CR1R2R3 complexes in aqueous solutions. Inorganica Chimica Acta, 1989, 155, 101-104.	1.2	4
251	Reactions of low valent transition-metal complexes with hydrogen peroxide. Are they "fenton-like―or not?. Journal of Inorganic Biochemistry, 1989, 36, 353.	1.5	1
252	Kinetics of the homolytic dioxygen insertion into the cobalt-carbon bond in (nta)(H2O)CoIII-CH3 Inorganic Chemistry, 1989, 28, 2511-2512.	1.9	26

#	Article	IF	CITATIONS
253	A copper(I) N,N,N',N'',N''-pentamethyldiethylenetriamine complex and its carbon monoxide adduct in aqueous solutions. Inorganic Chemistry, 1989, 28, 2998-3001.	1.9	24
254	Mechanistic study of β-hydroxy elimination from [tetra sulphophthalocyanine CoIII-CR1R2CR3R4OH] in aqueous solutions. A pulse radiolysis study. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1169.	1.0	13
255	Enhancement of the rate of addition of free radicals to dicarboxylacetylene by ï€ acid complexation to ruthenium(II)-pentaamine. A pulse radiolysis study. Inorganica Chimica Acta, 1988, 142, 5-6.	1.2	4
256	Equilibrium constants for the homolysis of the metal-carbon .sigma. bond in [(nta)(H2O)MIIICH3]- (M =) Tj ETQo	0 0 0 rgB7 1.9 rgB7	[/Qverlock 10
257	Formation and decomposition of transient complexes with a copper-carbon .sigmabond in the reaction of copper(I) phenanthroline with aliphatic free radicals. A pulse radiolysis study. Inorganic Chemistry, 1988, 27, 4130-4135.	1.9	23
258	The methyl(cyclam)nickel(III) dication in aqueous solutions: determination of the equilibrium constant of homolysis, kinetics of oxygen insertion, and methyl transfer to aquated chromium(2+). Inorganic Chemistry, 1988, 27, 4578-4581.	1.9	62
259	Formation and decomposition of iron-carbon .sigmabonds in the reaction of iron(II)-poly(amino) Tj ETQq1 1 0.7 Chemical Society, 1988, 110, 3903-3907.	784314 rgE 6.6	3T /Overlock 32
260	Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they "Fenton-like" or not? 1. The case of Cu+aq and Cr2+aq. Journal of the American Chemical Society, 1988, 110, 4293-4297.	6.6	222
261	Properties of complexes with cobalt–carbon bonds formed by reactions of aliphatic free radicals with nitrilotriacetate–cobalt(II) in aqueous solution. A pulse radiolysis study. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2933.	1.0	20
262	Kinetics of \hat{I}^2 -hydroxyl elimination from [(H2O)mCullCH2C(CH3)2Oh]+ in aqueous solution. A pulse-radiolysis Study. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 4157.	1.0	18
263	What is Unique About Superoxide Toxicity as Compared to Other Biological Reductants? — A Hypothesis. Free Radical Research Communications, 1988, 4, 231-236.	1.8	41
264	Kinetics of reaction of copper(I) and copper(II) ions with 2,5-dioxacyclohexyl free radicals and homolysis of the aqua-copper(II)-2,5-dioxacyclohexyl complex in aqueous solutions. A pulse radiolysis study. Inorganic Chemistry, 1987, 26, 2342-2344.	1.9	15
265	Kinetics of the β-hydroxy elimination reactions from the protoporphyrin iron(III)–CHRCH2OH complexes in aqueous solutions. A pulse-radiolytic study. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 3431.	1.0	15
266	Ring size effects on the chemical properties of tervalent nickel complexes with tetra-aza macrocyclic ligands in aqueous solutions. An electrochemical and pulse radiolytic study. Journal of the Chemical Society Dalton Transactions, 1986, , 2509.	1.1	13
267	Effect of nitrilotriacetate on the mechanism of reduction of copper(II) ions by .alphahydroxyalkyl free radicals via complexes with copper-carbon bonds as intermediates. A pulse-radiolytic study. Inorganic Chemistry, 1986, 25, 4897-4900.	1.9	16
268	Kinetics of formation and decomposition of the methyl-copper(II) complex in aqueous solutions. A pulse-radiolysis study. Inorganic Chemistry, 1986, 25, 1505-1506.	1.9	47
269	Determination of the equilibrium constant for binding hydroxide to tetraazamacrocyclic—Nickel(II) complexes. Inorganica Chimica Acta, 1986, 122, 149-151.	1.2	9
270	Stabilization of monovalent nickel in aqueous solutions by complexation with the β-isomer of C-5,12-racemic-1,4,5,7,7,8,11,12,14,14-decamethyl-1,4,8,11-tetraazacyclotetradecane. Inorganica Chimica Acta, 1986, 117, 129-132.	1.2	13

#	Article	IF	CITATIONS
271	An iridium-bipyridine complex as a photosensitizer for the bromide oxidation to bromine by oxygen. The Journal of Physical Chemistry, 1985, 89, 2460-2464.	2.9	20
272	Cleavage of an Ether Bond via ?-Elimination of Ethanol from [(H2O)5CrCH2CH2OC2H5]2+ in Aqueous Solutions; A Pulse Radiolysis Study. Angewandte Chemie International Edition in English, 1985, 24, 779-781.	4.4	10
273	βâ€Eliminierung von Ethanol aus [(H ₂ O) ₅ CrCH ₂ CK ₂ OC ₂ H ₅] <sup in wÃŘŸriger Lösung; eine Pulsradiolyseâ€Untersuchung. Angewandte Chemie, 1985, 97, 785-787.</sup 	>2 1/6 up>á	iЕ4
274	Ring Size Effect on the Chemical Properties of Monovalent Nickel Complexes with Tetraazamacrocyclic Ligands in Aqueous Solutions. Israel Journal of Chemistry, 1985, 25, 118-121.	1.0	20
275	Reactions of iron(II) protoporphyrin with strongly reducing free radicals in aqueous solutions. A pulse-radiolytic study. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 233.	1.0	12
276	A novel formyl complex [(H2O)5CrCHO]2+. A pulse radiolysis study. Journal of the Chemical Society Chemical Communications, 1985, , 424.	2.0	3
277	Stabilization of the monovalent nickel complex with 1,4,8,11-tetraazacyclotetradecane in aqueous solutions by N- and C-methylation. An electrochemical and pulse radiolysis study. Inorganic Chemistry, 1985, 24, 251-258.	1.9	96
278	Mechanism of hydrolysis of the metal-carbon bond in .alphahydroxyalkyl-chromium(III) complexes. Effect of nonparticipating ligands. Inorganic Chemistry, 1985, 24, 4158-4164.	1.9	20
279	Stabilization of copper(I) in aqueous solutions by ligation with the saturated tetra-aza macrocyclic ligand 1,4,5,7,7,8,11,12,14,14,-decamethyl-1,4,8,11-tetra azacyclotetradecane. Journal of the Chemical Society Chemical Communications, 1984, , 1683.	2.0	25
280	Mechanistic study of the .betahydroxyl elimination from pentaaqua(2-hydroxy-2-methylpropyl)chromium(2+) ion [[(H2O)5CrCH2CMe2OH]2+] in aqueous solution. Journal of the American Chemical Society, 1984, 106, 1876-1877.	6.6	16
281	Ligand metal interrelationships. 2. Effect of the change from square-planar to octahedral coordination on the pKa of the ligand in unsaturated tetraaza macrocyclic nickel complexes: a pulse-radiolytic study. Inorganic Chemistry, 1984, 23, 2361-2363.	1.9	5
282	Effect of pH and acetate on the rate of hydrolysis of the chromium-carbon bond in (.alphahydroxyalkyl)chromium(III) complexes. Inorganic Chemistry, 1984, 23, 84-87.	1.9	13
283	Reaction of .cntdot.CH2C(CH3)2OH radicals with cobalt(II) tetrasulfophthalocyanine in aqueous solutions. A pulse radiolytic study. Inorganic Chemistry, 1983, 22, 3040-3046.	1.9	22
284	Selectivity of outer-sphere electron-transfer reactions. 3. Inorganic Chemistry, 1983, 22, 688-690.	1.9	7
285	The cyclopentylpentaaquachromium(III) ion: synthesis, characterization, and kinetics of acidolysis, homolysis, and electrophilic cleavage reactions. Inorganic Chemistry, 1983, 22, 1009-1013.	1.9	13
286	Properties of (1,4,7,10,13-penta-azacyclohexadecane)nickel(III) in aqueous solutions: a pulse radiolytic study. Journal of the Chemical Society Dalton Transactions, 1983, , 2125.	1.1	7
287	Stabilization of the tervalent nickel complex with meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane by axial coordination of anions in aqueous solution. Inorganic Chemistry, 1982, 21, 73-80.	1.9	74
288	Homolytic decomposition of tertiary organochromium(III) complexes and evidence for their decomposition via reactions with aliphatic free radicals. A pulse radiolysis study. Inorganic Chemistry, 1982, 21, 4016-4020.	1.9	15

#	Article	IF	CITATIONS
289	Reactions of B12r with aliphatic free radicals: a pulse-radiolysis study. Journal of the American Chemical Society, 1982, 104, 4124-4128.	6.6	24
290	Electrocatalytic oxidations on chemically modified electrodes prepared by anodic deposition of a nickel complex with a tetra-azamacrocyclic ligand. Journal of the Chemical Society Chemical Communications, 1982, , 441.	2.0	12
291	On the nature and mechanism of decomposition of monovalent copper complexes with tetra-aza macrocyclic ligands in aqueous solutions. A pulse radiolytic study. Journal of the Chemical Society Dalton Transactions, 1982, , 1137.	1.1	9
292	Properties of copper(II) hydride formed in the reaction of aquacopper(I) ions with hydrogen atoms. A pulse radiolytic study. Inorganic Chemistry, 1982, 21, 1782-1784.	1.9	11
293	Reduction of cobalt(III) complexes by intramolecular electron transfer from bound free radicals. A pulse radiolytic study. Journal of the Chemical Society Dalton Transactions, 1982, , 943.	1.1	20
294	Stabilization of monovalent nickel in aqueous solutions by a saturated tetra-aza-macrocyclic ligand. Journal of the Chemical Society Chemical Communications, 1982, , 517.	2.0	11
295	Ligand-metal interrelationships. I. The tervalent nickel complex of 11,13-dimethyl-1,4,7,10-tetra-azacyclotrideca-10,13-diene. A. Pulse radiolytic study. Inorganica Chimica Acta, 1982, 64, L127-L129.	1.2	6
296	Difference in the stabilities of the diastereoisomers of the tervalent nickel complex with 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane in sulfate- and perchlorate-containing aqueous solutions. An electrochemical and pulse radiolysis study. Inorganic Chemistry, 1981, 20, 3988-3992.	1.9	35
297	Kinetics and mechanism of Cu(II) catalysed oxidation of malic acid by the peroxydisulphate ion—A comment. Journal of Inorganic and Nuclear Chemistry, 1981, 43, 401-402.	0.5	3
298	The electrochemical oxidation of divalent nickel complexes with tetra-aza-macrocyclic ligands in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 127, 113-126.	0.3	25
299	A pulse radiolysis study of the MnO2â^'4 ion. The stability of Mn(V) in 0.1 M NaOH. Inorganica Chimica Acta, 1981, 53, L99-L100.	1.2	12
300	Reactions of aliphatic free radicals with copper cations in aqueous solution. Part 2.—Reactions with cupric ions: a pulse radiolysis study. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1825.	1.0	62
301	Reactions of aliphatic free radicals with copper cations in aqueous solutions. Part 3.—Reactions with cuprous ions: a pulse radiolysis study. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1838.	1.0	36
302	Redox properties of a Cu(II) complex with a macrocyclic diene N4 ligand. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 112, 295-309.	0.3	4
303	Mechanism of the catalytic hydrogen production by gold sols. Hydrogen/deuterium isotope effect studies. The Journal of Physical Chemistry, 1980, 84, 870-875.	2.9	60
304	Comparative study of the electrochemical and pulse-radiolytic oxidation of the complexes of nickel(II) and copper(II) containing 1,4,8,11-tetra-azacyclotetradecane. Journal of the Chemical Society Dalton Transactions, 1980, , 1243.	1.1	28
305	Complexes of zinc(I), cadmium(I), and mercury(I) with 1, 4, 8, 11-tetraazacyclotetradecane in aqueous solutions A pulse radiolytic study. Journal of Inorganic and Nuclear Chemistry, 1980, 42, 219-222.	0.5	8
306	Nature and mechanism of decomposition of the complex of copper(I) with 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene in aqueous solutions. A pulse radiolytic study. Inorganic Chemistry, 1980, 19, 1908-1912.	1.9	12

#	Article	IF	CITATIONS
307	Activation energies for an intramolecular electron transfer reaction. Inorganic Chemistry, 1980, 19, 966-968.	1.9	16
308	Oxidation, reduction, and copper-carbon bond formation in the reactions of copper(II) tetraglycine with pulse radiolytically generated free radicals. Inorganic Chemistry, 1980, 19, 1373-1379.	1.9	17
309	Kinetics of aquation of the tris(acetylacetonate) complexes of divalent chromium, cobalt, and ruthenium. A pulse radiolytic study. Inorganic Chemistry, 1979, 18, 971-975.	1.9	15
310	Pulse radiolytic study of the oxidation of vitamin B12r by dibromide ions. Inorganic Chemistry, 1979, 18, 863-864.	1.9	2
311	Intermediates with copper–carbon bonds formed by the reaction of aliphatic free radicals with a copper–peptide complex in aqueous solutions. Journal of the Chemical Society Chemical Communications, 1979, , 893-895.	2.0	10
312	Electrochemical preparation of stable nickel(III) complexes with tetradentate macrocyclic ligands in aqueous solutions. Journal of the Chemical Society Chemical Communications, 1979, , 241.	2.0	30
313	Oxidation of a nickel(II) complex with an unsaturated macrocyclic ligand in aqueous solutions. A pulse radiolytic study. Inorganic Chemistry, 1979, 18, 429-433.	1.9	43
314	Complexation of a nickel(III) macrocyclic complex by sulfate ion. A pulse radiolytic study. Inorganic Chemistry, 1979, 18, 2763-2766.	1.9	34
315	Complexes of cations in unstable oxidation states in aqueous solutions as studied by pulse radiolysis. Accounts of Chemical Research, 1978, 11, 43-48.	7.6	36
316	Intramolecular Electron Transfer of Coordinated Pyrazinecarboxylato Radicals to Cobalt(III): A Pulse Radiolytic Study. Angewandte Chemie International Edition in English, 1978, 17, 608-609.	4.4	15
317	Oxidation of first-row bivalent transition-metal complexes containing ethylenediaminetetra-acetate and nitrilotriacetate ligands by free radicals: a pulse-radiolysis study. Journal of the Chemical Society Dalton Transactions, 1978, , 1105.	1.1	96
318	Kinetics of the formation and decomposition of carbon-cobalt(III) bonds in aqueous solutions by the reaction of aliphatic free radicals with a coenzyme B-12r model cobalt(II) complex. Journal of the American Chemical Society, 1978, 100, 5540-5548.	6.6	39
319	Intramolecular Electron Transfer Through a Bridging Carboxylate Group Coordinated to Two Cobalt(III)-Ions: A Pulse Radiolytic Study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 388-392.	0.9	12
320	The Effect of Chromium-Carbon [sgrave] Bonds on the Rate of Ligand Exchange of Trivalent Chromium Ions in Aqueous Solutions. Journal of Coordination Chemistry, 1977, 6, 249-251.	0.8	2
321	Aliphatic radicals as reducing agents of cobalt(III) and ruthenium(III) complexes: a pulse radiolytic study. Journal of the Chemical Society Dalton Transactions, 1977, , 1056.	1.1	16
322	Reactions of hydrogen atoms and aliphatic radicals with monovalent cadmium and nickel ions as a source of hydrogen yield in some radiation chemical systems. Journal of the Chemical Society Faraday Transactions I, 1977, 73, 622.	1.0	11
323	An intermediate with a copper–carbon bond formed by the reaction of copper ions with ·CH2CO2H radicals in aqueous solutions. Journal of the Chemical Society Chemical Communications, 1977, , 127-128.	2.0	18
324	Contrast in the effect of penta-amminecobalt(III) on the chemical properties of nicotineamide and isonicotineamide ligands. Journal of the Chemical Society Dalton Transactions, 1976, , 1976.	1.1	9

#	Article	IF	CITATIONS
325	Comment on the paper: Use of homogeneous competition for oh radicals in electrochemical studies for H abstraction from organic molecules. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74, 389-390.	0.3	1
326	Formation and properties of the trivalent nickel-ethylene diamine tetra-acetic acid (EDTA) complex in aqueous solutions: A pulse-radiolytic study. International Journal for Radiation Physics and Chemistry, 1975, 7, 611-616.	0.8	20
327	On the EPR spectrum of the trivalent nickel EDTA complex in aqueous solutions. Chemical Physics Letters, 1975, 33, 286-288.	1.2	18
328	Comparison between the inter- and intra-molecular kinetics of reduction of penta-ammine(ligand)cobalt(III) complexes by the para-nitrobenzoate radical: a pulse-radiolytic study. Journal of the Chemical Society Dalton Transactions, 1975, , 2477.	1.1	8
329	On the kinetic treatment of photochemically induced isotopic exchange. The International Journal of Applied Radiation and Isotopes, 1974, 25, 9-14.	0.7	2
330	Mechanism of reduction of porphyrins. Pulse radiolytic study. Journal of the American Chemical Society, 1974, 96, 2720-2727.	6.6	38
331	On the photochemical reaction of Cd with CH3Cl. Journal of Inorganic and Nuclear Chemistry, 1974, 36, 1902-1904.	0.5	1
332	Ultraviolet–visible spectrum, and kinetics of formation and decomposition, of penta-aquahydridochromium(III) and chromium(I) in aqueous perchlorate solutions: a pulse-radiolysis study. Journal of the Chemical Society Dalton Transactions, 1974, , 2559-2564.	1.1	14
333	Comments on the Nature of the Oxidized Form of the Nickel Dimethylglyoxime Complex. Israel Journal of Chemistry, 1972, 10, 735-738.	1.0	6
334	Trivalent nickel. I. Pulse radiolytic study of the formation and decomposition of the ammoniacal complex in aqueous solution. Inorganic Chemistry, 1972, 11, 2393-2397.	1.9	24
335	Trivalent nickel. II. Pulse radiolytic study of the formation and decomposition of the ethylenediamine and glycine complexes in aqueous solution. Inorganic Chemistry, 1972, 11, 2397-2401.	1.9	33
336	On the spectroelectrochemical characterization of the electrocatalytic oxidation of Cu(II) ethylenediamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 40, 377-384.	0.3	23
337	Electrocatalytic oxidation of amines on platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29, 429-438.	0.3	12
338	Trivalent copper. II. Pulse radiolytic study of the formation and decomposition of amino complexes. Inorganic Chemistry, 1971, 10, 2244-2249.	1.9	52
339	Trivalent copper. I. Pulse radiolytic study of the chemical properties of the aquo complex. Inorganic Chemistry, 1971, 10, 638-641.	1.9	100
340	Electrocatalytic Oxidation of Amines on Platinum Electrodes. Part III. Oxidation Of Ethylenediamine Via Higher Oxidation States of Nickel. Israel Journal of Chemistry, 1970, 8, 865-875.	1.0	6
341	Effect of ligands on the chemical properties of monovalent cadmium ions. Inorganic Chemistry, 1970, 9, 1762-1766.	1.9	13
342	Isotopic Exhange Induced by Excitation of the Iodine-Iodobenzene Charge-Transfer Complex. Journal of the American Chemical Society, 1970, 92, 418-420.	6.6	3

#	Article	IF	CITATIONS
343	Electrocatalytic oxidation of amines on platinum electrodes. Part I. Oxidation via copper complexes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1969, 23, A6-A8.	0.3	2
344	Reduction of cobalt(III) complexes by monovalent zinc, cadmium, and nickel ions in aqueous solutions. The Journal of Physical Chemistry, 1969, 73, 1091-1095.	2.9	16
345	Effect of ligands on reactivity of metal cations towards the hydrated electron. Part 1.—The effect of ethylenediaminetetraacetic acid. Transactions of the Faraday Society, 1969, 65, 1812-1817.	0.9	27
346	Effect of ligands on reactivity of metal cations towards the hydrated electron. Part 2.—Effect of glycine, ethylenediamine and nitrilotriacetic acid. Transactions of the Faraday Society, 1969, 65, 1818-1826.	0.9	16
347	Reductions by monovalent zinc, cadmium, and nickel cations. The Journal of Physical Chemistry, 1968, 72, 784-788.	2.9	36
348	H/D isotope effects in the formation of hydrogen from the combination of two radicals in aqueous solutions. Transactions of the Faraday Society, 1966, 62, 2121.	0.9	15
349	Reactivity of Aromatic Compounds towards Hydrogen Atoms. Nature, 1966, 209, 1348-1348.	13.7	24
350	Effect of linear energy transfer (LET) on the H/D isotope effect in the formation of hydrogen from irradiated water. Transactions of the Faraday Society, 1965, 61, 263.	0.9	1
351	Charge-transfer complexes of iodine and inorganic anions in solution. Transactions of the Faraday Society, 1963, 59, 1114.	0.9	60
352	THE RELATION BETWEEN LYOTROPIC AND SPECTROSCOPIC PROPERTIES OF ANIONS IN SOLUTION. The Journal of Physical Chemistry, 1962, 66, 446-450.	2.9	10