Jesús Mercado-Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088724/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek, 2007, 92, 367-389.	0.7	261
2	Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant and Soil, 2011, 344, 1-50.	1.8	256
3	Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology, 2000, 18, 779-783.	9.4	216
4	Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 2019, 10, 616.	1.5	179
5	Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp Biological Control, 2004, 30, 474-486.	1.4	165
6	Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 2001, 183, 1909-1920.	1.0	161
7	Root Hairs Play a Key Role in the Endophytic Colonization of Olive Roots by Pseudomonas spp. with Biocontrol Activity. Microbial Ecology, 2011, 62, 435-445.	1.4	142
8	Biotechnological Applications of Bacterial Endophytes. Current Biotechnology, 2014, 3, 60-75.	0.2	142
9	Colonization process of olive tissues by <i>Verticillium dahliae</i> and its <i>in planta</i> interaction with the biocontrol root endophyte <i>Pseudomonas fluorescens</i> PICF7. Microbial Biotechnology, 2009, 2, 499-511.	2.0	127
10	Belowground Microbiota and the Health of Tree Crops. Frontiers in Microbiology, 2018, 9, 1006.	1.5	118
11	Editorial special issue: soil, plants and endophytes. Plant and Soil, 2016, 405, 1-11.	1.8	115
12	Molecular Variability Within and Among Verticillium dahliae Vegetative Compatibility Groups Determined by Fluorescent Amplified Fragment Length Polymorphism and Polymerase Chain Reaction Markers. Phytopathology, 2006, 96, 485-495.	1.1	110
13	The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Frontiers in Microbiology, 2014, 5, 427.	1.5	100
14	Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogenâ€fixing bacterium <i>Pseudomonas protegens</i> Pfâ€5 X940. Environmental Microbiology, 2016, 18, 3522-3534.	1.8	92
15	Simultaneous Detection of the Defoliating and Nondefoliating Verticillium dahliae Pathotypes in Infected Olive Plants by Duplex, Nested Polymerase Chain Reaction. Plant Disease, 2003, 87, 1487-1494.	0.7	89
16	Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes. Frontiers in Microbiology, 2018, 9, 277.	1.5	79
17	Genetic and Virulence Diversity in Verticillium dahliae Populations Infecting Artichoke in Eastern-Central Spain. Phytopathology, 2006, 96, 288-298.	1.1	78
18	Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome, 2020, 8, 11,	4.9	78

#	Article	IF	CITATIONS
19	Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiological and Molecular Plant Pathology, 2003, 63, 91-105.	1.3	76
20	Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA. Journal of Bacteriology, 1993, 175, 5403-5410.	1.0	74
21	Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathology, 2001, 50, 609-619.	1.2	74
22	Spatiotemporal Analysis of Spread of Infections by Verticillium dahliae Pathotypes Within a High Tree Density Olive Orchard in Southern Spain. Phytopathology, 2008, 98, 167-180.	1.1	69
23	Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Research, 2015, 22, 1-11.	1.5	67
24	Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Scientific Reports, 2019, 9, 20423.	1.6	65
25	Plasmids in Rhizobia: The Role of Nonsymbiotic Plasmids. Molecular Plant-Microbe Interactions, 1996, 9, 535.	1.4	63
26	Title is missing!. European Journal of Plant Pathology, 2002, 108, 1-13.	0.8	60
27	Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Standards in Genomic Sciences, 2015, 10, 10.	1.5	60
28	Genetic Responses Induced in Olive Roots upon Colonization by the Biocontrol Endophytic Bacterium Pseudomonas fluorescens PICF7. PLoS ONE, 2012, 7, e48646.	1.1	60
29	Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol. Frontiers in Microbiology, 2016, 7, 1620.	1.5	58
30	Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade?. Plants, 2020, 9, 735.	1.6	58
31	Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7. FEMS Microbiology Ecology, 2008, 64, 297-306.	1.3	56
32	Phylogenetic Analysis of <i>Verticillium dahliae</i> Vegetative Compatibility Groups. Phytopathology, 2008, 98, 1019-1028.	1.1	56
33	Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 2016, 61, 269-282.	0.9	56
34	Tolerance of olive (<i>Olea europaea</i>) cv Frantoio to <i>Verticillium dahliae</i> relies on both basal and pathogenâ€induced differential transcriptomic responses. New Phytologist, 2018, 217, 671-686.	3.5	56
35	Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 2015, 06, 266.	1.5	55
36	Bacterial endophytes and root hairs. Plant and Soil, 2012, 361, 301-306.	1.8	54

Jesús Mercado-Blanco

#	Article	IF	CITATIONS
37	Rhizobacterial salicylate production provokes headaches!. Plant and Soil, 2014, 382, 1-16.	1.8	53
38	Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. European Journal of Plant Pathology, 2008, 122, 603-617.	0.8	52
39	Verticillium wilt of olive in Turkey: a survey on disease importance, pathogen diversity and susceptibility of relevant olive cultivars. European Journal of Plant Pathology, 2010, 127, 287-301.	0.8	52
40	Endophytic colonization and biocontrol performance of <scp> <i>P</i></scp> <i>seudomonas fluorescens </i> â€ <scp>PICF </scp> 7 in olive (<scp> <i>O</i></scp> <i>lea europaea </i> L.) are determined neither by pyoverdine production nor swimming motility. Environmental Microbiology, 2015, 17, 3139-3153.	1.8	51
41	Nucleotide Sequence and Characterization of Rhizobium meliloti Nodulation Competitiveness Genes nfe. Journal of Molecular Biology, 1993, 229, 570-576.	2.0	48
42	Biological control of tree and woody plant diseases: an impossible task?. BioControl, 2016, 61, 233-242.	0.9	48
43	Efficient colonization of the endophytes <i>Herbaspirillum huttiense</i> RCA24 and <i>Enterobacter cloacae</i> RCA25 influences the physiological parameters of <i>Oryza sativa</i> L. cv. Baldo rice. Environmental Microbiology, 2019, 21, 3489-3504.	1.8	47
44	A novel and rapid loop-mediated isothermal amplification assay for the specific detection of <i>Verticillium dahliae</i> . Journal of Applied Microbiology, 2014, 116, 942-954.	1.4	44
45	Correlation of molecular markers and biological properties in Verticillium dahliae and the possible origins of some isolates. Plant Pathology, 2005, 54, 549-557.	1.2	40
46	Stability and transmissibility of the cryptic plasmids of Rhizobium meliloti GR4. Archives of Microbiology, 1993, 160, 477-485.	1.0	39
47	Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Frontiers in Microbiology, 2015, 6, 928.	1.5	39
48	Bacillales Members from the Olive Rhizosphere Are Effective Biological Control Agents against the Defoliating Pathotype of Verticillium dahliae. Agriculture (Switzerland), 2018, 8, 90.	1.4	39
49	Ironâ€regulated metabolites produced by P seudomonas fluorescens WCS 374r are not required for eliciting induced systemic resistance against P seudomonas syringae pv. tomato in A rabidopsis. MicrobiologyOpen, 2012, 1, 311-325.	1.2	38
50	Identification of a Novel <i>Rhizobium meliloti</i> Nodulation Efficiency <i>nfe</i> Gene Homolog of <i>Agrobacterium</i> Ornithine Cyclodeaminase. Molecular Plant-Microbe Interactions, 1994, 7, 703.	1.4	35
51	The Transcriptome of Verticillium dahliae Responds Differentially Depending on the Disease Susceptibility Level of the Olive (Olea europaea L.) Cultivar. Genes, 2019, 10, 251.	1.0	34
52	Transcriptomic Analysis of Olea europaea L. Roots during the Verticillium dahliae Early Infection Process. Plant Genome, 2017, 10, plantgenome2016.07.0060.	1.6	33
53	A split-root system to assess biocontrol effectiveness and defense-related genetic responses in above-ground tissues during the tripartite interaction Verticillium dahliae-olive-Pseudomonas fluorescens PICF7 in roots. Plant and Soil, 2017, 417, 433-452.	1.8	32
54	From the root to the stem: interaction between the biocontrol root endophyte <i><scp>P</scp>seudomonas fluorescens</i> â€ <scp>PICF</scp> 7 and the pathogen <i><scp>P</scp>seudomonas savastanoi</i> â€ <scp>NCPPB</scp> 3335 in olive knots. Microbial Biotechnology, 2013, 6, 275-287.	2.0	31

#	Article	IF	CITATIONS
55	Life of Microbes Inside the Plant. , 2015, , 25-32.		30
56	The Large Nonsymbiotic Plasmid pRmeGR4a of Rhizobium meliloti GR4 Encodes a Protein Involved in Replication That Has Homology with the RepC Protein of Agrobacterium Plasmids. Plasmid, 1994, 32, 75-79.	0.4	29
5 7	A PCRâ€based â€~molecular tool box' for <i>in planta</i> differential detection of <i>Verticillium dahliae</i> vegetative compatibility groups infecting artichoke. Plant Pathology, 2009, 58, 515-526.	1.2	29
58	Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol - Second Edition. Frontiers in Microbiology, 2019, 10, 1935.	1.5	26
59	The Banana Root Endophytome: Differences between Mother Plants and Suckers and Evaluation of Selected Bacteria to Control Fusarium oxysporum f.sp. cubense. Journal of Fungi (Basel, Switzerland), 2021, 7, 194.	1.5	26
60	Detection of the defoliating and nondefoliating pathotypes of Verticillium dahliae in artificial and natural soils by nested PCR. Plant and Soil, 2005, 268, 349-356.	1.8	25
61	Pseudomonas fluorescensPICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiology Ecology, 2016, 92, fiw092.	1.3	25
62	Pseudomonas Strains that Exert Biocontrol of Plant Pathogens. , 2015, , 121-172.		22
63	Verticillium wilt of olive and its control: The heat is on. Plant and Soil, 2012, 355, 17-21.	1.8	20
64	Assessing the Involvement of Selected Phenotypes of Pseudomonas simiae PICF7 in Olive Root Colonization and Biological Control of Verticillium dahliae. Plants, 2021, 10, 412.	1.6	20
65	DNA sequence analysis of conserved genes reveals hybridization events that increase genetic diversity inÂVerticillium dahliae. Fungal Biology, 2010, 114, 209-218.	1.1	17
66	Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. Soil Biology, 2015, , 457-478.	0.6	17
67	A protein involved in stabilization of a large non-symbiotic plasmid of Rhizobium meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binding proteins. Gene, 1994, 139, 133-134.	1.0	13
68	Identification of Volatile Organic Compounds Emitted by Two Beneficial Endophytic Pseudomonas Strains from Olive Roots. Plants, 2022, 11, 318.	1.6	13
69	Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 2021, 22, 229.	1.2	11
70	Comparative study of neighboring Holm oak and olive trees-belowground microbial communities subjected to different soil management. PLoS ONE, 2020, 15, e0236796.	1.1	10
71	Transcriptional regulation of plant sugar transporter genes by beneficial rhizobacteria. Journal of Plant Interactions, 2021, 16, 443-451.	1.0	9
72	Functional Traits of Olive Varieties and Their Relationship with the Tolerance Level towards Verticillium Wilt. Plants, 2021, 10, 1079.	1.6	9

Jesús Mercado-Blanco

#	Article	IF	CITATIONS
73	Coupling the endophytic microbiome with the host transcriptome in olive roots. Computational and Structural Biotechnology Journal, 2021, 19, 4777-4789.	1.9	8
74	Evaluation of Indigenous Olive Biocontrol Rhizobacteria as Protectants against Drought and Salt Stress. Microorganisms, 2021, 9, 1209.	1.6	8
75	Unveiling Differences in Root Defense Mechanisms Between Tolerant and Susceptible Olive Cultivars to Verticillium dahliae. Frontiers in Plant Science, 2022, 13, 863055.	1.7	7
76	What Lies Beneath: Root-Associated Bacteria to Improve the Growth and Health of Olive Trees. , 2017, , 107-122.		6
77	Epigenetic Regulation of Verticillium dahliae Virulence: Does DNA Methylation Level Play A Role?. International Journal of Molecular Sciences, 2020, 21, 5197.	1.8	5
78	Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Frontiers in Microbiology, 2022, 13, 809126.	1.5	5
79	Protein Identification and Quantification by Mass Spectrometry-Based Analysis: Applications in Plant-Pathogen Interactions Studies. Current Proteomics, 2010, 7, 234-243.	0.1	3
80	Host Response to Biotic Stresses. Compendium of Plant Genomes, 2016, , 75-98.	0.3	2
81	Correlation Between Virulence and Morphological Characteristics of Microsclerotia of <i>Verticillium dahliae</i> Isolates Infecting Olive. Journal of Phytopathology, 2012, 160, 431-433.	0.5	1
82	What Determines Successful Colonization and Expression of Biocontrol Traits at the Belowground Level?. Progress in Biological Control, 2020, , 31-46.	0.5	1
83	DETECTION OF VERTICILLIUM DAHLIAE ISOLATES DIFFERING IN VEGETATIVE COMPATIBILITY IN INFECTED ARTICHOKE PLANTS BY MULTIPLEX, NESTED PCR. Acta Horticulturae, 2007, , 367-374.	0.1	0
84	IN PLANTA-PCR DETECTION OF OLIVE-DEFOLIATING AND NON DEFOLIATING PATHOTYPES OF VERTICILLIUM DAHLIAE. Acta Horticulturae, 2002, , 757-760.	0.1	0
85	GENETIC AND PATHOGENIC CHARACTERIZATION OF VERTICILLIUM DAHLIAE INFECTING ARTICHOKES IN THE VALENCIA REGION OF EASTERN SPAIN. Acta Horticulturae, 2004, , 491-495.	0.1	0
86	Title is missing!. , 2020, 15, e0236796.		0
87	Title is missing!. , 2020, 15, e0236796.		0
88	Title is missing!. , 2020, 15, e0236796.		0
89	Title is missing!. , 2020, 15, e0236796.		0