
Jolene J Windle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808844/publications.pdf Version: 2024-02-01

LOLENE I WINDLE

#	Article	IF	CITATIONS
1	Dissecting the Balance Between Metabolic and Oncogenic Functions of Astrocyteâ€Elevated Geneâ€1/Metadherin. Hepatology Communications, 2022, 6, 561-575.	2.0	4
2	Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. International Journal of Molecular Sciences, 2022, 23, 72.	1.8	5
3	Increased S1P expression in osteoclasts enhances bone formation in an animal model of Paget's disease. Journal of Cellular Biochemistry, 2021, 122, 335-348.	1.2	8
4	The oncogenicity of tumor-derived mutant p53 is enhanced by the recruitment of PLK3. Nature Communications, 2021, 12, 704.	5.8	12
5	Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Research, 2021, 81, 2429-2441.	0.4	5
6	Novelty-induced hyperactivity and suppressed cocaine induced locomotor activation in mice lacking threonine 53 phosphorylation of dopamine transporter. Behavioural Brain Research, 2021, 408, 113267.	1.2	5
7	MDA-9/Syntenin (SDCBP) Is a Critical Regulator of Chemoresistance, Survival and Stemness in Prostate Cancer Stem Cells. Cancers, 2020, 12, 53.	1.7	27
8	Human DENND1A.V2 Drives Cyp17a1 Expression and Androgen Production in Mouse Ovaries and Adrenals. International Journal of Molecular Sciences, 2020, 21, 2545.	1.8	12
9	Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo. JCI Insight, 2020, 5, .	2.3	9
10	Tnni3k alleles influence ventricular mononuclear diploid cardiomyocyte frequency. PLoS Genetics, 2019, 15, e1008354.	1.5	28
11	Posttranscriptional Inhibition of Protein Tyrosine Phosphatase Nonreceptor Type 23 by Staphylococcal Nuclease and Tudor Domain Containing 1: Implications for Hepatocellular Carcinoma. Hepatology Communications, 2019, 3, 1258-1270.	2.0	11
12	High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro. Journal of Cellular Biochemistry, 2019, 120, 16741-16749.	1.2	15
13	StarD5: an ER stress protein regulates plasma membrane and intracellular cholesterol homeostasis. Journal of Lipid Research, 2019, 60, 1087-1098.	2.0	25
14	Intraflagellar transporter protein 140 (IFT140), a component of IFTâ€A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton, 2018, 75, 70-84.	1.0	40
15	Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Research, 2018, 78, 6436-6446.	0.4	22
16	MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proceedings of the United States of America, 2018, 115, 5768-5773.	3.3	91
17	Cover Image, Volume 75, Issue 2. Cytoskeleton, 2018, 75, C1-C1.	1.0	0
18	Regulation of protective autophagy in anoikis-resistant glioma stem cells by SDCBP/MDA-9/Syntenin. Autophagy, 2018, 14, 1845-1846.	4.3	30

#	Article	IF	CITATIONS
19	Initial characterization of behavior and ketamine response in a mouse knockout of the post-synaptic effector gene Anks1b. Neuroscience Letters, 2017, 641, 26-32.	1.0	11
20	Oncogenic Role of SND1 in Development and Progression of Hepatocellular Carcinoma. Cancer Research, 2017, 77, 3306-3316.	0.4	42
21	A novel role of astrocyte elevated geneâ€1 (AEGâ€1) in regulating nonalcoholic steatohepatitis (NASH). Hepatology, 2017, 66, 466-480.	3.6	35
22	IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Research, 2017, 77, 4014-4025.	0.4	44
23	Measles virus nucleocapsid protein increases osteoblast differentiation in Paget's disease. Journal of Clinical Investigation, 2016, 126, 1012-1022.	3.9	37
24	Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget, 2016, 7, 46848-46861.	0.8	28
25	Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget, 2016, 7, 54102-54119.	0.8	25
26	Myeloma Cells Induce High Level of TAF12 Expression in Bone Marrow Stromal Cells, Resulting in Increased Osteoclastogenesis and Myeloma Cell Growth in Response to 1,25(OH)2D3. Blood, 2016, 128, 4421-4421.	0.6	0
27	Astrocyte elevated geneâ€1 and câ€Myc cooperate to promote hepatocarcinogenesis in mice. Hepatology, 2015, 61, 915-929.	3.6	40
28	Astrocyte Elevated Gene-1 (AEG-1) Regulates Lipid Homeostasis. Journal of Biological Chemistry, 2015, 290, 18227-18236.	1.6	18
29	Comparison of Effects of p53 Null and Gain-of-Function Mutations on Salivary Tumors in MMTV-Hras Transgenic Mice. PLoS ONE, 2015, 10, e0118029.	1.1	4
30	Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model. Oncotarget, 2015, 6, 26266-26277.	0.8	23
31	MDA-7/IL-24 functions as a tumor suppressor gene <i>in vivo</i> in transgenic mouse models of breast cancer. Oncotarget, 2015, 6, 36928-36942.	0.8	34
32	AEG-1 Regulates Retinoid X Receptor and Inhibits Retinoid Signaling. Cancer Research, 2014, 74, 4364-4377.	0.4	39
33	Genetic Deletion of AEG-1 Prevents Hepatocarcinogenesis. Cancer Research, 2014, 74, 6184-6193.	0.4	47
34	TBK1 Mediates Critical Effects of Measles Virus Nucleocapsid Protein (MVNP) on Pagetic Osteoclast Formation. Journal of Bone and Mineral Research, 2014, 29, 90-102.	3.1	24
35	Humanizing mouse folate metabolism: conversion of the dualâ€promoter mouse folylpolyglutamate synthetase gene to the human singleâ€promoter structure. FASEB Journal, 2014, 28, 1998-2008.	0.2	4
36	Genetically Engineered Mice as Experimental Tools to Dissect the Critical Events in Breast Cancer. Advances in Cancer Research, 2014, 121, 331-382.	1.9	28

#	Article	IF	CITATIONS
37	PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature Medicine, 2014, 20, 1270-1278.	15.2	641
38	Increased IL-6 Expression in Osteoclasts Is Necessary But Not Sufficient for the Development of Paget's Disease of Bone. Journal of Bone and Mineral Research, 2014, 29, 1456-1465.	3.1	28
39	Measles virus nucleocapsid protein, a key contributor to Paget's disease, increases IL-6 expression via down-regulation of FoxO3/Sirt1 signaling. Bone, 2013, 53, 269-276.	1.4	18
40	Role of ATF7-TAF12 interactions in the vitamin D response hypersensitivity of osteoclast precursors in Paget's disease. Journal of Bone and Mineral Research, 2013, 28, 1489-1500.	3.1	15
41	Paclitaxel-Induced Apoptosis Is BAK-Dependent, but BAX and BIM-Independent in Breast Tumor. PLoS ONE, 2013, 8, e60685.	1.1	38
42	IL3 Induces Osteoclastogenesis In Vivo and Is Modulated By Bone Marrow Monocyte / Macrophage Derived Activin A. Blood, 2013, 122, 3101-3101.	0.6	5
43	A Novel Sequestosome-1/p62 ZZ Domain Inhibitor Induces New Bone Formation In The Presence Of Myeloma In Vivo. Blood, 2013, 122, 684-684.	0.6	10
44	Astrocyte elevated gene-1 promotes hepatocarcinogenesis: Novel insights from a mouse model. Hepatology, 2012, 56, 1782-1791.	3.6	67
45	Phenotypic characterization of transgenic mice harboring Nf1 ^{+/â^'} or Nf1 ^{â^'/â^'} osteoclasts in otherwise Nf1 ^{+/+} background. Journal of Cellular Biochemistry, 2012, 113, 2136-2146.	1.2	9
46	Contributions of the Measles Virus Nucleocapsid Gene and the SQSTM1/p62P392L Mutation to Paget's Disease. Cell Metabolism, 2011, 13, 23-34.	7.2	104
47	ADAM8 enhances osteoclast precursor fusion and osteoclast formation in vitro and in vivo. Journal of Bone and Mineral Research, 2011, 26, 169-181.	3.1	37
48	Blocking the ZZ Domain of Sequestosome 1/p62 Suppress the Enhancement of Myeloma Cell Growth and Osteoclast Formation by Marrow Stromal Cells. Blood, 2011, 118, 888-888.	0.6	5
49	Osteoclasts are important for bone angiogenesis. Blood, 2010, 115, 140-149.	0.6	155
50	Osteoclastâ€specific inactivation of the integrinâ€linked kinase (ILK) inhibits bone resorption. Journal of Cellular Biochemistry, 2010, 110, 960-967.	1.2	25
51	The ZZ Domain of Sequestosome-1/p62 Plays An Important Role In Stromal Cell Support of Myeloma Cell Growth and Osteoclast Formation. Blood, 2010, 116, 128-128.	0.6	6
52	p21 ^{CIP1} attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19035-19039.	3.3	163
53	In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation. DNA Repair, 2009, 8, 654-663.	1.3	43
54	Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood, 2009, 113, 4894-4902.	0.6	53

#	Article	IF	CITATIONS
55	p62 as a Therapeutic Target for Myeloma Cell Growth and Osteoclast Formation Blood, 2009, 114, 2857-2857.	0.6	0
56	Role of LPA ₄ /p2y9/GPR23 in Negative Regulation of Cell Motility. Molecular Biology of the Cell, 2008, 19, 5435-5445.	0.9	138
57	A SQSTM1/p62 mutation linked to Paget's disease increases the osteoclastogenic potential of the bone microenvironment. Human Molecular Genetics, 2008, 17, 3708-3719.	1.4	85
58	Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. Journal of Clinical Investigation, 2007, 117, 133-142.	3.9	113
59	Ultrastructure of Bone Cells in Paget's Disease of Bone. Journal of Bone and Mineral Research, 2006, 21, P51-P54.	3.1	23
60	Experimental Models of Paget's Disease. Journal of Bone and Mineral Research, 2006, 21, P55-P57.	3.1	15
61	α9β1: A Novel Osteoclast Integrin That Regulates Osteoclast Formation and Function. Journal of Bone and Mineral Research, 2006, 21, 1657-1665.	3.1	70
62	Expression of Measles Virus Nucleocapsid Protein in Osteoclasts Induces Paget's Disease-Like Bone Lesions in Mice. Journal of Bone and Mineral Research, 2005, 21, 446-455.	3.1	101
63	Combretastatin A-4 Prodrug in the Treatment of a Murine Model of Retinoblastoma. , 2005, 46, 8.		42
64	Paget disease of bone. Journal of Clinical Investigation, 2005, 115, 200-208.	3.9	295
65	Targeting p62ZIP in Marrow Stromal Cells Is Highly Effective at Inhibiting Myeloma Cell Growth and Osteoclast Formation Blood, 2005, 106, 630-630.	0.6	Ο
66	Lung-specific expression of human mutant p53-273H is associated with a high frequency of lung adenocarcinoma in transgenic mice. Oncogene, 2002, 21, 7831-7838.	2.6	26
67	Cyclin kinase inhibitor p21 potentiates bile acid-induced apoptosis in hepatocytes that is dependent on p53. Hepatology, 2002, 36, 39-48.	3.6	41
68	Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Research, 2002, 62, 2077-84.	0.4	59
69	Osteoclasts Formed by Measles Virus-Infected Osteoclast Precursors from hCD46 Transgenic Mice Express Characteristics of Pagetic Osteoclasts*. Endocrinology, 2001, 142, 2898-2905.	1.4	68
70	Osteoclasts Formed by Measles Virus-Infected Osteoclast Precursors from hCD46 Transgenic Mice Express Characteristics of Pagetic Osteoclasts. Endocrinology, 2001, 142, 2898-2905.	1.4	22
71	EDWARD COTLIER AND ROBERT WEINREB, EDITORS Retinoblastoma in Transgenic Mice. Survey of Ophthalmology, 1999, 43, 508-518.	1.7	32
72	Reciprocal Regulation of Neu Tyrosine Kinase Activity and Caveolin-1 Protein Expression in Vitro and in Vivo. Journal of Biological Chemistry, 1998, 273, 20448-20455.	1.6	188

#	Article	IF	CITATIONS
73	A Farnesyltransferase Inhibitor Induces Tumor Regression in Transgenic Mice Harboring Multiple Oncogenic Mutations by Mediating Alterations in Both Cell Cycle Control and Apoptosis. Molecular and Cellular Biology, 1998, 18, 85-92.	1.1	164
74	Basic Fibroblast Growth Factor: The Neurotrophic Factor Influencing the Ingrowth of Neural Tissue into the Anterior Pituitary of α-T7 Transgenic Mice?. Neuroendocrinology, 1995, 61, 622-627.	1.2	6
75	An Immortal Cell Culture Model of Hypothalamic Gonadotropin-Releasing Hormone Neurons. Methods, 1995, 7, 303-310.	1.9	18
76	Confirmation of the Assignment of the Human Tartrate-Resistant Acid Phosphatase Gene (ACP5) to Chromosome 19. Genomics, 1994, 19, 180-181.	1.3	7
77	Assignment of the Mouse Tartrate-Resistant Acid Phosphatase Gene (Acp5) to Chromosome 9. Genomics, 1993, 15, 421-422.	1.3	30
78	Cloning and characterization of the 5′-flanking region of the mouse tartrate-resistant acid phosphatase gene. Journal of Bone and Mineral Research, 1993, 8, 1263-1270.	3.1	41
79	Neural Tissue within Anterior Pituitary Tumors Generated by Oncogene Expression in Transgenic Mice. Neuroendocrinology, 1992, 56, 300-311.	1.2	19
80	Immortalized Hypothalamic Gonadotropinâ€Releasing Hormone Neurons. Novartis Foundation Symposium, 1992, 168, 104-126.	1.2	13
81	Immortalization of Neuroendocrine Cells by Targeted Oncogenesis. , 1991, 47, 69-96.		32
82	Retinoblastoma in transgenic mice. Nature, 1990, 343, 665-669.	13.7	242
83	Cell Lines of the Pituitary Gonadotrope Lineage Derived by Targeted Oncogenesis in Transgenic Mice. Molecular Endocrinology, 1990, 4, 597-603.	3.7	479
84	Immortalization of hypothalamic GnRH by genetically targeted tumorigenesis. Neuron, 1990, 5, 1-10.	3.8	989