Timothy Bates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	1.9	4
2	Characterization of Sea Surface Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS Microscopy and FTIR Spectroscopy. ACS Earth and Space Chemistry, 2022, 6, 1899-1913.	1.2	5
3	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	1.9	15
4	Measurements from the RV <i>Ronald H. Brown</i> and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth System Science Data, 2021, 13, 1759-1790.	3.7	28
5	Seasonal Differences in Submicron Marine Aerosol Particle Organic Composition in the North Atlantic. Frontiers in Marine Science, 2021, 8, .	1.2	9
6	Variability in Marine Plankton Ecosystems Are Not Observed in Freshly Emitted Sea Spray Aerosol Over the North Atlantic Ocean. Geophysical Research Letters, 2020, 47, e2019GL085938.	1.5	30
7	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	1.2	36
8	Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030913.	1.2	30
9	North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics. Atmospheric Chemistry and Physics, 2020, 20, 16007-16022.	1.9	9
10	Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20309-20314.	3.3	43
11	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	1.2	111
12	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	1.6	103
13	Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geoscience, 2017, 10, 674-679.	5.4	166
14	Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,961.	1.2	22
15	Coupled oceanâ€atmosphere loss of marine refractory dissolved organic carbon. Geophysical Research Letters, 2016, 43, 2765-2772.	1.5	35
16	Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews, 2015, 115, 4383-4399.	23.0	289
17	Light-enhanced primary marine aerosol production from biologically productive seawater. Geophysical Research Letters, 2014, 41, 2661-2670.	1.5	48
18	Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nature Geoscience, 2014, 7, 228-232.	5.4	223

ΤΙΜΟΤΗΥ BATES

#	Article	IF	CITATIONS
19	Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Science and Technology, 2014, 48, v-x.	1.5	25
20	Sources and composition of submicron organic mass in marine aerosol particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,977.	1.2	106
21	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
22	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103
23	Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. Journal of Geophysical Research, 2011, 116, .	3.3	62
24	Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6652-6657.	3.3	322
25	Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALSâ€REx 2008. Journal of Geophysical Research, 2010, 115, .	3.3	184
26	Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes. Journal of Geophysical Research, 2008, 113, .	3.3	73
27	Influence of particle size and chemistry on the cloud nucleating properties of aerosols. Atmospheric Chemistry and Physics, 2008, 8, 1029-1042.	1.9	113
28	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
29	Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	134
30	Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	113
31	Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. Journal of Geophysical Research, 2005, 110, .	3.3	61
32	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. Journal of Geophysical Research, 2004, 109, .	3.3	94
33	Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon. Environmental Science & Technology, 2003, 37, 3055-3061.	4.6	72
34	Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99. Journal of Geophysical Research, 2002, 107, INX2 25-1.	3.3	88
35	Aerosol optical properties during INDOEX 1999: Means, variability, and controlling factors. Journal of Geophysical Research, 2002, 107, INX2 19-1.	3.3	106
36	Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic. Journal of Geophysical Research, 2001, 106, 20783-20809.	3.3	79

#	Article	IF	CITATIONS
37	Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties. Journal of Geophysical Research, 1998, 103, 16547-16563.	3.3	171
38	Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean. Journal of Geophysical Research, 1992, 97, 9859-9865.	3.3	241
39	Wintertime Observations of Tropical Northwest Atlantic Aerosol Properties during ATOMIC: Varying Mixtures of Dust and Biomass Burning. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1