P Hidalgo-Manrique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper/graphene composites: a review. Journal of Materials Science, 2019, 54, 12236-12289.	1.7	193
2	Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Materialia, 2017, 124, 456-467.	3.8	148
3	Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Materials Letters, 2014, 128, 199-203.	1.3	78
4	Microstructure and mechanical behaviour of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes. Journal of Materials Science, 2017, 52, 13466-13477.	1.7	48
5	Influence of strain rate on the twin and slip activity of a magnesium alloy containing neodymium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 220-231.	2.6	44
6	Lowering the temperature for high strain rate superplasticity in an Al–Mg–Zn–Cu alloy via cooled friction stir processing. Materials Chemistry and Physics, 2013, 142, 182-185.	2.0	41
7	Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature. Acta Materialia, 2015, 92, 265-277.	3.8	39
8	Strategy for severe friction stir processing to obtain acute grain refinement of an Al–Zn–Mg–Cu alloy in three initial precipitation states. Materials Characterization, 2016, 112, 197-205.	1.9	38
9	Influence of the Processing Temperature on the Microstructure, Texture, and Hardness of the 7075 Aluminum Alloy Fabricated by Accumulative Roll Bonding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 758-767.	1.1	37
10	Effect of Nd Additions on Extrusion Texture Development and on Slip Activity in a Mg-Mn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4819-4829.	1.1	36
11	Grain size versus microstructural stability in the high strain rate superplastic response of a severely friction stir processed Al-Zn-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 329-337.	2.6	36
12	Mg–1Zn–1Ca alloy for biomedical applications. Influence of the secondary phases on the mechanical and corrosion behaviour. Journal of Alloys and Compounds, 2020, 831, 154735.	2.8	35
13	Evolution of the microstructure, texture and creep properties of the 7075 aluminium alloy during hot accumulative roll bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 434-442.	2.6	31
14	Effect of warm accumulative roll bonding on the evolution of microstructure, texture and creep properties in the 7075 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 287-294.	2.6	30
15	Influence of Constituent Materials on the Impact Toughness and Fracture Mechanisms of Hot-Roll-Bonded Aluminum Multilayer Laminates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 61-72.	1.1	29
16	Influence of the Accumulative Roll Bonding Process Severity on the Microstructure and Superplastic Behaviour of 7075 Al Alloy. Journal of Materials Science and Technology, 2016, 32, 774-782.	5.6	27
17	Interaction Between Precipitate Basal Plates and Tensile Twins in Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3855-3867.	1.1	21
18	Effect of heat treatment on the mechanical and biocorrosion behaviour of two Mg-Zn-Ca alloys. Journal of Magnesium and Alloys, 2022, 10, 540-554.	5.5	21

#	Article	IF	CITATIONS
19	Influence of microstructural stability on the creep mechanism of Al–7wt% Si alloy processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 162-171.	2.6	16
20	Control of the Mechanical Asymmetry in an Extruded MN11 Alloy by Static Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3282-3291.	1.1	13
21	Microstructural characterization by electron backscatter diffraction of a hot worked Al–Cu–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3161-3168.	2.6	11
22	Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi2 intermetallic particles. Materials Characterization, 2010, 61, 1294-1298.	1.9	10
23	Effect of thermal treatment on the interfacial shear toughness of an aluminium composite laminate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2579-2587.	2.6	9
24	Role of particles on microstructure and mechanical properties of the severely processed 7075 aluminium alloy. Journal of Materials Science, 2014, 49, 833-841.	1.7	9
25	Microstructure and properties of aluminium alloy 6082 formed by the Hot Form Quench process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140751.	2.6	9
26	Direct observation of the dynamic evolution of precipitates in aluminium alloy 7021 at high strain rates via high energy synchrotron X-rays. Acta Materialia, 2021, 205, 116532.	3.8	7
27	Accumulative Roll Bonding of 7075 Aluminium Alloy at High Temperature. Materials Science Forum, 0, 638-642, 1929-1933.	0.3	2
28	Influence of Precipitation on Twinning in a Mg-Al-Zn Alloy. Materials Science Forum, 2018, 941, 1041-1046.	0.3	0
29	Influencia del tratamiento térmico en las intercaras y propiedades mecÃ;nicas de un laminado multicapa de aluminio. Revista De Metalurgia, 2010, 46, 85-94.	0.1	0