Sian Henson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8087719/publications.pdf

Version: 2024-02-01

279487 395343 3,107 34 23 33 citations h-index g-index papers 35 35 35 4461 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Are senescence and exhaustion intertwined or unrelated processes that compromise immunity?. Nature Reviews Immunology, 2011, 11, 289-295.	10.6	367
2	p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. Journal of Clinical Investigation, 2014, 124, 4004-4016.	3.9	285
3	The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nature Immunology, 2014, 15, 965-972.	7.0	243
4	Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends in Immunology, 2016, 37, 866-876.	2.9	208
5	KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood, 2009, 113, 6619-6628.	0.6	205
6	Reversible Senescence in Human CD4+CD45RA+CD27â^' Memory T Cells. Journal of Immunology, 2011, 187, 2093-2100.	0.4	193
7	Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8ÂT Cells in the Same Host. Cell Reports, 2016, 16, 1243-1252.	2.9	176
8	Human <scp>CD</scp> 8 ⁺ <scp>EMRA</scp> T cells display a senescenceâ€associated secretory phenotype regulated by p38 <scp>MAPK</scp> . Aging Cell, 2018, 17, e12675.	3.0	161
9	KLRG1—more than a marker for T cell senescence. Age, 2009, 31, 285-291.	3.0	149
10	Properties of end-stage human T cells defined by CD45RA re-expression. Current Opinion in Immunology, 2012, 24, 476-481.	2.4	141
11	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	7.0	139
12	The role of the T cell in age-related inflammation. Age, 2013, 35, 563-572.	3.0	109
13	Blockade of PDâ€1 or p38 MAP kinase signaling enhances senescent human CD8 ⁺ Tâ€cell proliferation by distinct pathways. European Journal of Immunology, 2015, 45, 1441-1451.	1.6	108
14	Variation of human natural killer cell phenotypes with age: Identification of a unique KLRG1-negative subset. Human Immunology, 2010, 71, 676-681.	1.2	82
15	Mitochondrial mass governs the extent of human T cell senescence. Aging Cell, 2020, 19, e13067.	3.0	79
16	Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5′-Monophosphate–Activated Protein Kinase. Journal of Immunology, 2016, 197, 2891-2899.	0.4	76
17	Type 2 diabetes is associated with the accumulation of senescent T cells. Clinical and Experimental Immunology, 2019, 197, 205-213.	1.1	69
18	Multifunctional cytomegalovirus (CMV)â€specific CD8 ⁺ T cells are not restricted by telomereâ€related senescence in young or old adults. Immunology, 2015, 144, 549-560.	2.0	52

#	Article	IF	CITATIONS
19	IFN-α Inhibits Telomerase in Human CD8+ T Cells by Both hTERT Downregulation and Induction of p38 MAPK Signaling. Journal of Immunology, 2013, 191, 3744-3752.	0.4	42
20	Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 564461.	1.8	32
21	Acute hyperglycaemic crisis after vaccination against COVIDâ€19: A case series. Diabetic Medicine, 2021, 38, e14631.	1.2	30
22	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.3	28
23	Skin resident memory CD8+ T cells are phenotypically and functionally distinct from circulating populations and lack immediate cytotoxic function. Clinical and Experimental Immunology, 2018, 194, 79-92.	1.1	26
24	Memory T-Cell Homeostasis and Senescence during Aging. Advances in Experimental Medicine and Biology, 2010, 684, 189-197.	0.8	24
25	Immuno-metabolic impact of the multiple sclerosis patients $\hat{a} \in \mathbb{N}$ sera on endothelial cells of the blood-brain barrier. Journal of Neuroinflammation, 2020, 17, 153.	3.1	20
26	Sequential interleukin 2 and pembrolizumab use in progressive multifocal leukoencephalopathy. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	13
27	GATA3 induces mitochondrial biogenesis in primary human CD4+ T cells during DNA damage. Nature Communications, 2021, 12, 3379.	5.8	11
28	Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Research Reviews, 2018, 47, 24-30.	5.0	10
29	Senescence and Type 2 Diabetic Cardiomyopathy: How Young Can You Die of Old Age?. Frontiers in Pharmacology, 2021, 12, 716517.	1.6	9
30	Defect in HSP90 expression in highly differentiated human CD8+ T lymphocytes. Cell Death and Disease, 2014, 5, e1294-e1294.	2.7	7
31	Preoperative lymphopaenia, mortality, and morbidity after elective surgery: systematic review and meta-analysis. British Journal of Anaesthesia, 2021, 127, 32-40.	1.5	6
32	Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8+ EMRA T Cells During Type 2 Diabetes. Frontiers in Aging, 2021, 2, .	1.2	3
33	Mitochondrial Dysfunction Accelerates Ageing. Immunometabolism, 2020, 2, e200035.	0.7	3
34	Editorial: Targeting Leukocyte Trafficking: Insights and Future Directions. Frontiers in Immunology, 2021, 12, 777002.	2.2	1