Ange-Therese Akono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8087484/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valorization of marble powder wastes using rice husk ash to yield enhanced-performance inorganic polymer cements: Phase evolution, microstructure, and micromechanics analyses. Cleaner Engineering and Technology, 2022, 8, 100461.	2.1	3
2	Nanostructure of calcium-silicate-hydrates in fine recycled aggregate concrete. Cement and Concrete Composites, 2021, 115, 103827.	4.6	26
3	Basic creep and fracture response of fine recycled aggregate concrete. Construction and Building Materials, 2021, 266, 121107.	3.2	28
4	Fracture toughness of one- and two-dimensional nanoreinforced cement via scratch testing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200288.	1.6	3
5	Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: A microstructural approach. Materials Chemistry and Physics, 2021, 267, 124602.	2.0	8
6	Fabrication of fiber-reinforced polymer ceramic composites by wet electrospinning. Manufacturing Letters, 2021, , .	1.1	6
7	Geochemically induced shear slip in artificially fractured dolomite- and clay-cemented sandstone. International Journal of Greenhouse Gas Control, 2021, 111, 103448.	2.3	2
8	Performance of geopolymer composites made with feldspathic solid solutions: Micromechanics and microstructure. Cement and Concrete Composites, 2021, 124, 104241.	4.6	15
9	Lattice Discrete Particle Modeling of Size Effect in Slab Scratch Tests. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	14
10	Advanced Geomechanical Model to Predict the Impact of CO2-Induced Microstructural Alterations on the Cohesive-Frictional Behavior of Mt. Simon Sandstone. Minerals (Basel, Switzerland), 2021, 11, 38.	0.8	1
11	Influence of multi-walled carbon nanotubes on the fracture response and phase distribution of metakaolin-based potassium geopolymers. Journal of Materials Science, 2021, 56, 19403.	1.7	5
12	Nanostructure and Fracture Behavior of Carbon Nanofiber-Reinforced Cement Using Nanoscale Depth-Sensing Methods. Materials, 2020, 13, 3837.	1.3	8
13	Fracture behavior of metakaolinâ€based geopolymer reinforced with carbon nanofibers. International Journal of Ceramic Engineering & Science, 2020, 2, 234-242.	0.5	12
14	Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cement and Concrete Research, 2020, 137, 106197.	4.6	53
15	Effect of nano-TiO2 on C–S–H phase distribution within Portland cement paste. Journal of Materials Science, 2020, 55, 11106-11119.	1.7	18
16	Influence of geochemical reactions on the creep behavior of Mt. Simon sandstone. International Journal of Greenhouse Gas Control, 2020, 103, 103183.	2.3	8
17	Influence of pore structure on the strength behavior of particle- and fiber-reinforced metakaolin-based geopolymer composites. Cement and Concrete Composites, 2019, 104, 103361.	4.6	34
18	Geochemical and geomechanical alteration of siliciclastic reservoir rock by supercritical CO2-saturated brine formed during geological carbon sequestration. International Journal of Greenhouse Gas Control, 2019, 88, 251-260.	2.3	29

ANGE-THERESE AKONO

#	Article	IF	CITATIONS
19	A review of geochemical–mechanical impacts in geological carbon storage reservoirs. , 2019, 9, 474-504.		32
20	Influence of geochemistry on toughening behavior of organic-rich shale. Acta Geotechnica, 2019, 14, 1129-1142.	2.9	12
21	Modeling \$\$hbox {CO}_2\$\$-Induced Alterations in Mt. Simon Sandstone via Nanomechanics. Rock Mechanics and Rock Engineering, 2019, 52, 1353-1375.	2.6	20
22	Intrinsic mechanical properties of calcium aluminate crystals via the linear comparison composite method coupled with nano-indentation. Mechanics of Materials, 2018, 118, 74-84.	1.7	9
23	Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale. Construction and Building Materials, 2018, 175, 735-745.	3.2	27
24	Microscopic assessment of bone toughness using scratch tests. Bone Reports, 2017, 6, 17-25.	0.2	25
25	Fracture properties of the alkali silicate gel using microscopic scratch testing. Cement and Concrete Composites, 2017, 79, 71-75.	4.6	13
26	Reply to "Discussion on the Fracture mechanics interpretation of the scratch test by Akono et al.― Engineering Fracture Mechanics, 2017, 178, 14-21.	2.0	9
27	Rate-independent fracture toughness of gray and black kerogen-rich shales. Acta Geotechnica, 2017, 12, 1207-1227.	2.9	31
28	Microstructure–toughness relationships in calcium aluminate cement–polymer composites using instrumented scratch testing. Journal of Materials Science, 2017, 52, 13120-13132.	1.7	12
29	Microscopic Toughness of Viscous Solids via Scratching: From Amorphous Polymers to Gas Shale. Journal of Nanomechanics & Micromechanics, 2017, 7, .	1.4	12
30	Fragility Assessment of Bovine Cortical Bone Using Scratch Tests. Journal of Visualized Experiments, 2017, , .	0.2	0
31	Nano-Scale Characterization of Organic-Rich Shale via Indentation Methods. , 2016, , 209-233.		8
32	Microscopic fracture characterization of gas shale via scratch testing. Mechanics Research Communications, 2016, 78, 86-92.	1.0	52
33	Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing. Journal of Nanomechanics & Micromechanics, 2016, 6, .	1.4	27
34	Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials. Engineering Fracture Mechanics, 2016, 158, 23-38.	2.0	16
35	Micromechanics-based estimates on the macroscopic fracture toughness of micro-particulate composites. Engineering Fracture Mechanics, 2015, 148, 243-257.	2.0	5
36	Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time. Cement and Concrete Research, 2015, 67, 103-121.	4.6	118

#	Article	IF	CITATIONS
37	Discussion: Strength-to-fracture scaling in scratching. Engineering Fracture Mechanics, 2014, 119, 21-28.	2.0	41
38	An improved technique for characterizing the fracture toughness via scratch test experiments. Wear, 2014, 313, 117-124.	1.5	99
39	Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. Journal of Materials Research, 2012, 27, 485-493.	1.2	123
40	Fundamental Investigation of the Chemical and Mechanical Properties of High-Temperature-Cured Oilwell Cements. , 2012, , .		6
41	Fracture scaling relations for scratch tests of axisymmetric shape. Journal of the Mechanics and Physics of Solids, 2012, 60, 379-390.	2.3	54
42	Scratch test model for the determination of fracture toughness. Engineering Fracture Mechanics, 2011, 78, 334-342.	2.0	101
43	Scratching as a Fracture Process: From Butter to Steel. Physical Review Letters, 2011, 106, 204302.	2.9	102