
## Zoltan Varga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8087345/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Discovery of human Hv1 channel peptide inhibitors. Biophysical Journal, 2022, 121, 504a.                                                                                                                   | 0.5 | Ο         |
| 2  | Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel.<br>Biophysical Journal, 2022, 121, 247a.                                                                      | 0.5 | 0         |
| 3  | Functional Voltage-Gated Sodium Channels Are Present in the Human B Cell Membrane. Cells, 2022, 11, 1225.                                                                                                  | 4.1 | 0         |
| 4  | sVmKTx, a transcriptome analysis-based synthetic peptide analogue of Vm24, inhibits Kv1.3 channels of<br>human T cells with improved selectivity. Biochemical Pharmacology, 2022, 199, 115023.             | 4.4 | 4         |
| 5  | Investigation of the Role of the TRPA1 Ion Channel in Conveying the Effect of Dimethyl Trisulfide on<br>Vascular and Histological Changes in Serum-Transfer Arthritis. Pharmaceuticals, 2022, 15, 671.     | 3.8 | 2         |
| 6  | A Novel Spider Peptide that Affects the Voltage Gated Potassium Channel Kv1.5. Biophysical Journal, 2021, 120, 246a-247a.                                                                                  | 0.5 | 1         |
| 7  | The Kv1.3 K+ channel in the immune system and its "precision pharmacology―using peptide toxins.<br>Biologia Futura, 2021, 72, 75-83.                                                                       | 1.4 | 13        |
| 8  | An ω-3, but Not an ω-6 Polyunsaturated Fatty Acid Decreases Membrane Dipole Potential and Stimulates<br>Endo-Lysosomal Escape of Penetratin. Frontiers in Cell and Developmental Biology, 2021, 9, 647300. | 3.7 | 11        |
| 9  | Shaker-IR K+ channel gating in heavy water: Role of structural water molecules in inactivation.<br>Journal of General Physiology, 2021, 153, .                                                             | 1.9 | 5         |
| 10 | Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the KV1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Frontiers in Molecular Biosciences, 2021, 8, 735357.                  | 3.5 | 9         |
| 11 | Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 1303.                                                                                          | 3.8 | 10        |
| 12 | Characterization of Direct Cyclodextrin Effects on Voltage-Gated Potassium Channels. Biophysical<br>Journal, 2020, 118, 263a-264a.                                                                         | 0.5 | 1         |
| 13 | Detecting and Modelling Conformational States of the Proton Channel with Voltage-Clamp<br>Fluorometry. Biophysical Journal, 2020, 118, 275a.                                                               | 0.5 | Ο         |
| 14 | Periodic Membrane Potential and Ca2+ Oscillations in T Cells Forming an Immune Synapse.<br>International Journal of Molecular Sciences, 2020, 21, 1568.                                                    | 4.1 | 9         |
| 15 | Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158706.           | 2.4 | 50        |
| 16 | The activation gate controls steady-state inactivation and recovery from inactivation in<br><i>Shaker</i> . Journal of General Physiology, 2020, 152, .                                                    | 1.9 | 7         |
| 17 | The Origin of the Voltage Clamp Fluorometry Signal in Ci-Hv1 Proton Channel. Biophysical Journal, 2019, 116, 243a.                                                                                         | 0.5 | 0         |
| 18 | N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis.<br>Cell Communication and Signaling, 2019, 17, 166.                                                     | 6.5 | 9         |

ZOLTAN VARGA

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Determining the target of membrane sterols on voltage-gated potassium channels. Biochimica Et<br>Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 312-325.           | 2.4 | 13        |
| 20 | Determining the Target of Membrane Sterols on the Gating of Voltage-Gated Potassium Channels<br>using Voltage-Clamp Fluorometry. Biophysical Journal, 2018, 114, 477a.                  | 0.5 | 0         |
| 21 | Optimization of the Synthesis of Flavone–Amino Acid and Flavone–Dipeptide Hybrids via<br>Buchwald–Hartwig Reaction. Journal of Organic Chemistry, 2017, 82, 4578-4587.                  | 3.2 | 20        |
| 22 | Analysis of the State-Dependent Block of Shaker IR by bTBuA. Biophysical Journal, 2017, 112, 247a.                                                                                      | 0.5 | 0         |
| 23 | Probing the Gating of Kv10.1 Channels by MTS Reagents. Biophysical Journal, 2017, 112, 248a.                                                                                            | 0.5 | 0         |
| 24 | KCa1.1 Channel Auxiliary Beta Subunit Composition in Glioblastoma Multiforme. Biophysical Journal,<br>2017, 112, 546a.                                                                  | 0.5 | 0         |
| 25 | Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains. Journal of General Physiology, 2017, 149, 389-403.                                                  | 1.9 | 30        |
| 26 | Mechanisms of noncovalent $\hat{l}^2$ subunit regulation of NaV channel gating. Journal of General Physiology, 2017, 149, 813-831.                                                      | 1.9 | 62        |
| 27 | Sterol Regulation of Voltage-Gated K+ Channels. Current Topics in Membranes, 2017, 80, 255-292.                                                                                         | 0.9 | 14        |
| 28 | An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility. Scientific Reports, 2016, 5, 18397.                                  | 3.3 | 21        |
| 29 | The Effect of Membrane Cholesterol Content on the Gating Mechanism of Voltage Gated Potassium<br>Channels. Biophysical Journal, 2016, 110, 104a.                                        | 0.5 | 0         |
| 30 | DIII of Voltage-Gated Na+ Channels Interacts With Inactivation in the Time Domain of Intermediate<br>Inactivation. Biophysical Journal, 2016, 110, 437a.                                | 0.5 | 0         |
| 31 | 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Archiv European Journal of Physiology, 2016, 468, 1403-1418.    | 2.8 | 15        |
| 32 | Shaker-IR K Channel Gating in Heavy Water: Role of Structural Water Molecules in Inactivation.<br>Biophysical Journal, 2016, 110, 343a-344a.                                            | 0.5 | 3         |
| 33 | 7-Dehydrocholesterol Modifies the Operation of Kv1.3 Channels in T Cells Isolated from<br>Smith-Lemli-Opitz Syndrome Patients. Biophysical Journal, 2016, 110, 278a-279a.               | 0.5 | 0         |
| 34 | Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds. Chemical Science, 2016, 7, 2666-2673. | 7.4 | 7         |
| 35 | The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunology Letters, 2016, 171, 60-69.                       | 2.5 | 9         |
| 36 | Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.<br>Progress in Biophysics and Molecular Biology, 2016, 120, 3-17.                   | 2.9 | 19        |

ZOLTAN VARGA

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Anti-Proliferative Effect of Cation Channel Blockers on T Lymphocytes Stimulated by Anti-CD3 and Anti-CD28. Biophysical Journal, 2015, 108, 586a-587a.                                      | 0.5 | 0         |
| 38 | Potassium Channel Blocking Peptide Toxins from Scorpion Venom. , 2015, , 493-527.                                                                                                               |     | 3         |
| 39 | Direct Measurement of Cardiac Na <sup>+</sup> Channel Conformations Reveals Molecular<br>Pathologies of Inherited Mutations. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1228-1239. | 4.8 | 32        |
| 40 | The <em>Xenopus</em> Oocyte Cut-open Vaseline Gap Voltage-clamp Technique With<br>Fluorometry. Journal of Visualized Experiments, 2014, , .                                                     | 0.3 | 22        |
| 41 | Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells. Molecular Pharmacology, 2012, 82, 372-382.                                | 2.3 | 83        |
| 42 | Switch of Voltage-Gated K+ Channel Expression in the Plasma Membrane of Chondrogenic Cells<br>Affects Cytosolic Ca2+-Oscillations and Cartilage Formation. PLoS ONE, 2011, 6, e27957.           | 2.5 | 39        |
| 43 | A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus. Biochemical Pharmacology, 2008, 76, 1142-1154.                         | 4.4 | 46        |
| 44 | Involvement of Membrane Channels in Autoimmune Disorders. Current Pharmaceutical Design, 2007,<br>13, 2456-2468.                                                                                | 1.9 | 8         |
| 45 | Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion<br>Channels of Human T Lymphocytes. Molecular Pharmacology, 2005, 67, 1034-1044.       | 2.3 | 58        |
| 46 | Ion channels and lymphocyte activation. Immunology Letters, 2004, 92, 55-66.                                                                                                                    | 2.5 | 101       |
| 47 | Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Archiv European Journal of Physiology, 2003, 445, 674-682.                                                            | 2.8 | 82        |