Michel Neunlist

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8087251/michel-neunlist-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

173 7,937 50 83 g-index

189 9,360 6.2 5.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
173	Mild Chronic Colitis Triggers Parkinsonism in LRRK2 Mutant Mice through Activating TNF- Pathway <i>Movement Disorders</i> , 2022 ,	7	
172	Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies. <i>Gut</i> , 2021 , 70, 6-8	19.2	3
171	Gastrointestinal mucosal biopsies in Parkinson's disease: beyond alpha-synuclein detection. <i>Journal of Neural Transmission</i> , 2021 , 1	4.3	O
170	The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. <i>Journal of Biological Chemistry</i> , 2021 , 297, 101300	5.4	0
169	Upregulation of enteric alpha-synuclein as a possible link between inflammatory bowel disease and Parkinson's disease. <i>Gut</i> , 2021 , 70, 2010-2012	19.2	O
168	Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. <i>Neurochemical Research</i> , 2021 , 46, 1781-1793	4.6	0
167	Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis. <i>Molecular Metabolism</i> , 2021 , 47, 101183	8.8	5
166	LRRK2 is reduced in Parkinson's disease gut. <i>Acta Neuropathologica</i> , 2021 , 142, 601-603	14.3	4
165	A murine model to study the gut bacteria parameters during complex antibiotics like cefotaxime and ceftriaxone treatment. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 1423-1430	6.8	2
164	PGI Inhibits Intestinal Epithelial Permeability and Apoptosis to Alleviate Colitis. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2021 , 12, 1037-1060	7.9	2
163	Tau in the gut, does it really matter?. Journal of Neurochemistry, 2021, 158, 94-104	6	2
162	Early remodeling of the colonic mucosa after allogeneic hematopoietic stem cells transplantation: An open-label controlled pilot study on 19 patients. <i>United European Gastroenterology Journal</i> , 2021 , 9, 955-963	5.3	1
161	Fecal Supernatant from Adult with Autism Spectrum Disorder Alters Digestive Functions, Intestinal Epithelial Barrier, and Enteric Nervous System. <i>Microorganisms</i> , 2021 , 9,	4.9	2
160	Cancer induces a stress ileopathy depending on B-adrenergic receptors and promoting dysbiosis that contribute to carcinogenesis <i>Cancer Discovery</i> , 2021 ,	24.4	4
159	Analysis of enteric nervous system and intestinal epithelial barrier to predict complications in Hirschsprung's disease. <i>Scientific Reports</i> , 2020 , 10, 21725	4.9	4
158	The gut in Parkinson's disease: Bottom-up, top-down, or neither?. <i>Neurogastroenterology and Motility</i> , 2020 , 32, e13777	4	24
157	T cells show preferential adhesion to enteric neural cells in culture and are close to neural cells in the myenteric ganglia of Crohn's patients. <i>Journal of Neuroimmunology</i> , 2020 , 349, 577422	3.5	3

156	Tau accumulates in Crohn's disease gut. FASEB Journal, 2020, 34, 9285-9296	0.9	6
155	A panel of stomach-specific biomarkers (GastroPanel) for the diagnosis of atrophic gastritis: A prospective, multicenter study in a low gastric cancer incidence area. <i>Helicobacter</i> , 2020 , 25, e12727	4.9	12
154	Environmental enrichment alleviates the deleterious effects of stress in experimental autoimmune encephalomyelitis. <i>Multiple Sclerosis Journal - Experimental, Translational and Clinical</i> , 2020 , 6, 205521	732095	9806
153	Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. <i>Scientific Reports</i> , 2020 , 10, 15119	4.9	3
152	Is Parkinson's disease a chronic low-grade inflammatory bowel disease?. <i>Journal of Neurology</i> , 2020 , 267, 2207-2213	5.5	31
151	Secretion of Acid Sphingomyelinase and Ceramide by Endothelial Cells Contributes to Radiation-Induced Intestinal Toxicity. <i>Cancer Research</i> , 2020 , 80, 2651-2662	10.1	7
150	Detection of alpha-synuclein aggregates in gastrointestinal biopsies by protein misfolding cyclic amplification. <i>Neurobiology of Disease</i> , 2019 , 129, 38-43	7·5	35
149	Basal and Spasmolytic Effects of a Hydroethanolic Leaf Extract of L. on Intestinal Motility: An Study. Journal of Medicinal Food, 2019 , 22, 653-662	2.8	8
148	Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. <i>Brain, Behavior, and Immunity</i> , 2019 , 80, 179-192	16.6	54
147	Defecation disorders in Spina Bifida: Realistic goals and best therapeutic approaches. <i>Neurourology and Urodynamics</i> , 2019 , 38, 719-725	2.3	4
146	Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring. <i>FASEB Journal</i> , 2019 , 33, 770-781	0.9	8
145	Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. <i>EBioMedicine</i> , 2019 , 49, 172-188	8.8	17
144	IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. <i>Journal of Clinical Investigation</i> , 2019 , 129, 1910-1925	15.9	38
143	Acute inflammation down-regulates alpha-synuclein expression in enteric neurons. <i>Journal of Neurochemistry</i> , 2019 , 148, 746-760	6	12
142	Can the gut be the missing piece in uncovering PD pathogenesis?. <i>Parkinsonism and Related Disorders</i> , 2019 , 59, 26-31	3.6	31
141	Enteric alpha-synuclein expression is increased in Crohn's disease. <i>Acta Neuropathologica</i> , 2019 , 137, 359-361	14.3	20
140	Quantitative assessment of mucosal architecture using computer-based analysis of confocal laser endomicroscopy in inflammatory bowel diseases. <i>Gastrointestinal Endoscopy</i> , 2019 , 89, 626-636	5.2	19
139	Rat enteric glial cells express novel isoforms of Interleukine-7 regulated during inflammation. <i>Neurogastroenterology and Motility</i> , 2019 , 31, e13467	4	7

138	Colonic neuropathology is not associated with autonomic dysfunction in Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2019 , 61, 224-227	3.6	5
137	Heterogeneous pattern of autonomic dysfunction in Parkinson's disease. <i>Journal of Neurology</i> , 2018 , 265, 933-941	5.5	20
136	Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2018 , 5, 31-49	7.9	19
135	Does Parkinson's disease start in the gut?. Acta Neuropathologica, 2018, 135, 1-12	14.3	125
134	Glioplasticity in irritable bowel syndrome. <i>Neurogastroenterology and Motility</i> , 2018 , 30, e13232	4	10
133	Fecal incontinence in patients with spina bifida: The target is the rectum. <i>Neurourology and Urodynamics</i> , 2018 , 37, 1082-1087	2.3	4
132	Modulation of VIPergic phenotype of enteric neurons by colonic biopsy supernatants from patients with inflammatory bowel diseases: Involvement of IL-6 in Crohn's disease. <i>Neurogastroenterology and Motility</i> , 2018 , 30, e13198	4	9
131	The multiple faces of inflammatory enteric glial cells: is Crohn's disease a gliopathy?. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 315, G1-G11	5.1	27
130	Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 65	7.3	14
129	Acid-Hydrolyzed Gliadins Worsen Food Allergies through Early Sensitization. <i>Molecular Nutrition and Food Research</i> , 2018 , 62, e1800159	5.9	9
128	Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. <i>Frontiers in Microbiology</i> , 2018 , 9, 432	5.7	92
127	Le microbiote, l[htestin et le cerveau. <i>Phytotherapie</i> , 2018 , 16, 315-319	0.4	
126	Anti-inflammatory Effects of Enhanced Recovery Programs on Early-Stage Colorectal Cancer Surgery. <i>World Journal of Surgery</i> , 2018 , 42, 953-964	3.3	16
125	Cyclooxygenase 2 is upregulated in the gastrointestinal tract in Parkinson's disease. <i>Movement Disorders</i> , 2018 , 33, 493-494	7	11
124	Roux-en-Y gastric bypass reduces plasma cholesterol in diet-induced obese mice by affecting trans-intestinal cholesterol excretion and intestinal cholesterol absorption. <i>International Journal of Obesity</i> , 2018 , 42, 552-560	5.5	13
123	Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. <i>Tumor Biology</i> , 2018 , 40, 1010428318799028	2.9	5
122	Perioperative Transcutaneous Tibial Nerve Stimulation to Reduce Postoperative Ileus After Colorectal Resection: A Pilot Study. <i>Diseases of the Colon and Rectum</i> , 2018 , 61, 1080-1088	3.1	5
121	Biochemical analysis of Esynuclein extracted from control and Parkinson's disease colonic biopsies. <i>Neuroscience Letters</i> , 2017 , 641, 81-86	3.3	15

120	Epithelial expression and function of trypsin-3 in irritable bowel syndrome. <i>Gut</i> , 2017 , 66, 1767-1778	19.2	66
119	Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. <i>Alimentary Pharmacology and Therapeutics</i> , 2017 , 45, 909-922	6.1	58
118	Sleeve Gastrectomy Alters Intestinal Permeability in Diet-Induced Obese Mice. <i>Obesity Surgery</i> , 2017 , 27, 2590-2598	3.7	21
117	L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats. <i>Neurogastroenterology and Motility</i> , 2017 , 29, e13069	4	23
116	Bowel Dysfunction Related to Spina Bifida: Keep It Simple. <i>Diseases of the Colon and Rectum</i> , 2017 , 60, 1209-1214	3.1	18
115	Development of a porcine model for assessment of mucosal repair following endoscopic resection of the lower gastrointestinal tract. <i>Endoscopy International Open</i> , 2017 , 5, E1014-E1019	3	2
114	A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. Journal of Physiology, 2017 , 595, 583-598	3.9	26
113	Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. <i>Nature Medicine</i> , 2017 , 23, 49-59	50.5	313
112	Gender specific behavioral alterations are associated with gut dysbiosis in mice exposed to multifactorial early-life adversity. <i>European Neuropsychopharmacology</i> , 2017 , 27, S682-S683	1.2	
111	Enteric alpha-synuclein pathology in LRRK2-G2019S Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2017 , 40, 83-84	3.6	7
110	Cross-linking for the analysis of Esynuclein in the enteric nervous system. <i>Journal of Neurochemistry</i> , 2016 , 139, 839-847	6	18
109	The arachidonic acid metabolite 11 Prostaglandin F2 Controls intestinal epithelial healing: deficiency in patients with Crohn's disease. <i>Scientific Reports</i> , 2016 , 6, 25203	4.9	21
108	Evaluation of alpha-synuclein immunohistochemical methods for the detection of Lewy-type synucleinopathy in gastrointestinal biopsies. <i>Acta Neuropathologica Communications</i> , 2016 , 4, 35	7.3	53
107	Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model. <i>Journal of Physiology</i> , 2016 , 594, 4309-23	3.9	17
106	Postnatal development of the myenteric glial network and its modulation by butyrate. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 310, G941-51	5.1	21
105	Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2016 , 71, 68-76	9.3	29
104	Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. <i>Gastroenterology</i> , 2016 , 150, 168-80	13.3	44
103	TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. <i>Journal of Neuroinflammation</i> , 2016 , 13, 187	10.1	31

102	What a gastrointestinal biopsy can tell us about Parkinson's disease?. <i>Neurogastroenterology and Motility</i> , 2016 , 28, 966-74	4	20
101	Enteric glial cells have specific immunosuppressive properties. <i>Journal of Neuroimmunology</i> , 2016 , 295-296, 79-83	3.5	14
100	LIIIIs postopfatoire. Milanismes, incidence, prilention. <i>Journal De Chirurgie Visciliale</i> , 2016 , 153, 453-461	O	1
99	Postoperative ileus: Pathophysiology, incidence, and prevention. <i>Journal of Visceral Surgery</i> , 2016 , 153, 439-446	1.9	107
98	Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6475-83	5.7	8
97	Structural alterations of the intestinal epithelial barrier in Parkinson's disease. <i>Acta Neuropathologica Communications</i> , 2015 , 3, 12	7.3	136
96	Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. <i>Nature Biotechnology</i> , 2015 , 33, 549-554	44.5	104
95	Reversibility of gastric mucosal lesions induced by sodium phosphate tablets and characterized by probe-based confocal laser endomicroscopy. <i>Endoscopy International Open</i> , 2015 , 3, E69-75	3	4
94	Effects of 1-week sacral nerve stimulation on the rectal intestinal epithelial barrier and neuromuscular transmission in a porcine model. <i>Neurogastroenterology and Motility</i> , 2015 , 27, 40-50	4	6
93	Spontaneous Intestinal Perforation and Necrotizing Enterocolitis: A 16-Year Retrospective Study from a Single Center. <i>European Journal of Pediatric Surgery</i> , 2015 , 25, 520-5	1.9	5
92	Apport de la neurogastro-entfologie aux maladies psychiatriques. European Psychiatry, 2015, 30, S25-S	266	
91	Enteric glial cells: new players in Parkinson's disease?. <i>Movement Disorders</i> , 2015 , 30, 494-8	7	72
90	Optimizing Western Blots for the Detection of Endogenous Esynuclein in the Enteric Nervous System. <i>Journal of Parkinsonn Disease</i> , 2015 , 5, 765-72	5.3	13
89	Improvement of Refractory Ulcerative Proctitis With Sacral Nerve Stimulation. <i>Journal of Clinical Gastroenterology</i> , 2015 , 49, 853-7	3	20
88	Activation of the prostaglandin D2 metabolic pathway in Crohn's disease: involvement of the enteric nervous system. <i>BMC Gastroenterology</i> , 2015 , 15, 112	3	14
87	Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth. <i>Glia</i> , 2015 , 63, 2298-312	9	13
86	Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. <i>Gastroenterology</i> , 2015 , 148, 1002-1011.e4	13.3	94
85	A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. <i>Journal of Clinical Investigation</i> , 2015 , 125, 4483-96	15.9	60

(2012-2014)

84	Enteric GFAP expression and phosphorylation in Parkinson's disease. <i>Journal of Neurochemistry</i> , 2014 , 130, 805-15	6	95
83	Nutrient-induced changes in the phenotype and function of the enteric nervous system. <i>Journal of Physiology</i> , 2014 , 592, 2959-65	3.9	60
82	B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. <i>Journal of Experimental Medicine</i> , 2014 , 211, 1215-29	16.6	40
81	Appraisal of the dopaminergic and noradrenergic innervation of the submucosal plexus in PD. <i>Journal of Parkinson</i> Disease, 2014 , 4, 571-6	5.3	25
80	Peripheral autonomic nervous system involvement in Gaucher-related parkinsonism. <i>Journal of Parkinson</i> Disease, 2014 , 4, 29-32	5.3	11
79	Enteric glial cells: recent developments and future directions. <i>Gastroenterology</i> , 2014 , 147, 1230-7	13.3	99
78	Food allergy enhances allergic asthma in mice. Respiratory Research, 2014, 15, 142	7.3	19
77	Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. <i>Journal of Neuroinflammation</i> , 2014 , 11, 202	10.1	38
76	The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2013 , 10, 90-100	24.2	170
75	Probe-based confocal laser endomicroscopy: a new method for quantitative analysis of pit structure in healthy and Crohn's disease patients. <i>Digestive and Liver Disease</i> , 2013 , 45, 487-92	3.3	12
74	Activity-dependent secretion of alpha-synuclein by enteric neurons. <i>Journal of Neurochemistry</i> , 2013 , 125, 512-7	6	65
73	Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterology and Motility, 2013 , 25, e183-93	4	51
72	Colonic inflammation in Parkinson's disease. <i>Neurobiology of Disease</i> , 2013 , 50, 42-8	7.5	343
71	Characterization of human, mouse, and rat cultures of enteric glial cells and their effect on intestinal epithelial cells. <i>Neurogastroenterology and Motility</i> , 2013 , 25, e755-64	4	23
70	Properties of myenteric neurones and mucosal functions in the distal colon of diet-induced obese mice. <i>Journal of Physiology</i> , 2013 , 591, 5125-39	3.9	19
69	Prenatal intestinal obstruction affects the myenteric plexus and causes functional bowel impairment in fetal rat experimental model of intestinal atresia. <i>PLoS ONE</i> , 2013 , 8, e62292	3.7	12
68	A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson's disease. <i>Neurobiology of Disease</i> , 2012 , 45, 305-9	7.5	106
67	Sacral nerve stimulation enhances epithelial barrier of the rectum: results from a porcine model. Neurogastroenterology and Motility, 2012, 24, 267-73, e110	4	18

66	A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson's disease. <i>Neurogastroenterology and Motility</i> , 2012 , 24, e202-5	4	63
65	Analysis of colonic alpha-synuclein pathology in multiple system atrophy. <i>Parkinsonism and Related Disorders</i> , 2012 , 18, 893-5	3.6	39
64	Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. <i>Journal of Physiology</i> , 2012 , 590, 533-44	3.9	52
63	The omega-6 fatty acid derivative 15-deoxy-IIII Throstaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. <i>Journal of Physiology</i> , 2012 , 590, 2739-50	3.9	40
62	Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract. <i>Neurogastroenterology and Motility</i> , 2012 , 24, e611-21	4	12
61	Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. <i>American Journal of Physiology - Renal Physiology</i> , 2012 , 302, G1373-80	5.1	28
60	Enteric glia and neuroprotection: basic and clinical aspects. <i>American Journal of Physiology - Renal Physiology</i> , 2012 , 303, G887-93	5.1	44
59	Colonic endoscopic full-thickness biopsies: from the neuropathological analysis of the myenteric plexus to the functional study of neuromuscular transmission. <i>Gastrointestinal Endoscopy</i> , 2011 , 73, 10	29 -3 4	14
58	Colonic neuropathology is independent of olfactory dysfunction in Parkinson's disease. <i>Journal of Parkinson</i> Disease, 2011 , 1, 389-94	5.3	5
57	Modulation of Neuroglial Myenteric Phenotype by Mechanical Stress. <i>Pediatric Research</i> , 2011 , 70, 808	-8 9.8	
56	n-3 polyunsaturated fatty acids in the maternal diet modify the postnatal development of nervous regulation of intestinal permeability in piglets. <i>Journal of Physiology</i> , 2011 , 589, 4341-52	3.9	37
55	Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. <i>American Journal of Physiology - Renal Physiology</i> , 2011 , 300, G976-87	5.1	93
54	Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. <i>Gut</i> , 2011 , 60, 473-84	19.2	63
53	Parkinson disease: the enteric nervous system spills its guts. <i>Neurology</i> , 2011 , 77, 1761-7	6.5	93
52	ESynuclein expression is induced by depolarization and cyclic AMP in enteric neurons. <i>Journal of Neurochemistry</i> , 2010 , 115, 694-706	6	21
51	Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. <i>Journal of Physiology</i> , 2010 , 588, 2533-44	3.9	59
50	Biopsable neural tissues: toward new biomarkers for Parkinson's disease?. <i>Frontiers in Psychiatry</i> , 2010 , 1, 128	5	28
49	Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. <i>American Journal of Physiology - Renal Physiology</i> , 2010 , 299, G539-47	5.1	41

(2007-2010)

48	Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. <i>Gastroenterology</i> , 2010 , 138, 1772-82	13.3	273
47	Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. <i>Neurogastroenterology and Motility</i> , 2010 , 22, e11-4	4	57
46	Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. <i>FASEB Journal</i> , 2010 , 24, 1082-94	0.9	76
45	Colonic biopsies to assess the neuropathology of Parkinson's disease and its relationship with symptoms. <i>PLoS ONE</i> , 2010 , 5, e12728	3.7	286
44	Characterisation of early mucosal and neuronal lesions following Shigella flexneri infection in human colon. <i>PLoS ONE</i> , 2009 , 4, e4713	3.7	31
43	Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. <i>BMC Genomics</i> , 2009 , 10, 507	4.5	50
42	Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. <i>Neurogastroenterology and Motility</i> , 2009 , 21, 215-22	4	65
41	ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. <i>Neurogastroenterology and Motility</i> , 2009 , 21, 870-e62	4	52
40	The second brain and Parkinson's disease. European Journal of Neuroscience, 2009, 30, 735-41	3.5	142
39	Neuroplasticity and neuroprotection in enteric neurons: role of epithelial cells. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 382, 577-82	3.4	17
38	Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. <i>Gut</i> , 2009 , 58, 196-201	19.2	360
37	Les biopsies coliques obtenues par endoscopie : un outil pour Eudier latteinte du systine nerveux entique dans la maladie de Parkinson. <i>Revue Neurologique</i> , 2009 , 165, S9-S10	3	
36	Activity-dependent regulation of tyrosine hydroxylase expression in the enteric nervous system. <i>Journal of Physiology</i> , 2008 , 586, 1963-75	3.9	65
35	Neuro-glial crosstalk in inflammatory bowel disease. <i>Journal of Internal Medicine</i> , 2008 , 263, 577-83	10.8	61
34	Pathological lesions in colonic biopsies during Parkinson's disease. <i>Gut</i> , 2008 , 57, 1741-3	19.2	159
33	Intestinal epithelial cell dysfunction is mediated by an endothelial-specific radiation-induced bystander effect. <i>Radiation Research</i> , 2007 , 167, 185-93	3.1	36
32	Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. <i>Gastroenterology</i> , 2007 , 132, 1344-58	13.3	281
31	Starring roles for astroglia in barrier pathologies of gut and brain. <i>Laboratory Investigation</i> , 2007 , 87, 731-6	5.9	95

30	Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2007 , 292, G231-41	5.1	105
29	Serum from achalasia patients alters neurochemical coding in the myenteric plexus and nitric oxide mediated motor response in normal human fundus. <i>Gut</i> , 2006 , 55, 319-26	19.2	50
28	Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. <i>Gut</i> , 2006 , 55, 630-7	19.2	161
27	Intestinal neuro-epithelial interactions modulate neuronal chemokines production. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 344, 554-61	3.4	26
26	Acidity induces c-Fos expression in a subpopulation of human colonic submucosal neurons. <i>Neuroscience Letters</i> , 2006 , 404, 23-7	3.3	1
25	Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion. <i>Cellular Microbiology</i> , 2005 , 7, 1798-810	3.9	42
24	The human enteric nervous system. Neurogastroenterology and Motility, 2004, 16 Suppl 1, 55-9	4	141
23	Effect of LPS on basal and induced apo E secretion by 25-OH chol and 9cRA in differentiated CaCo-2. <i>Journal of Cellular Biochemistry</i> , 2004 , 91, 786-95	4.7	9
22	Vasoactive intestinal peptide induces IL-8 production in human colonic epithelial cells via MAP kinase-dependent and PKA-independent pathways. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 317, 187-91	3.4	28
21	Changes in chemical coding of myenteric neurones in ulcerative colitis. <i>Gut</i> , 2003 , 52, 84-90	19.2	134
21	Changes in chemical coding of myenteric neurones in ulcerative colitis. <i>Gut</i> , 2003 , 52, 84-90 Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55	19.2 5.1	134 34
	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an		
20	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55 Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel	5.1	34
20	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55 Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 239-42 Neurochemical coding of myenteric neurones in the human gastric fundus. <i>Neurogastroenterology</i>	5.1	34
20 19 18	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55 Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 239-42 Neurochemical coding of myenteric neurones in the human gastric fundus. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 655-62 Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated	5.1	34 46 29
20 19 18	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55 Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 239-42 Neurochemical coding of myenteric neurones in the human gastric fundus. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 655-62 Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1028 Comparison of quality of life and anorectal function after artificial sphincter implantation. <i>Diseases</i>	5.1 4 4 3-5 6	34 46 29
20 19 18 17	Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1049-55 Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 239-42 Neurochemical coding of myenteric neurones in the human gastric fundus. <i>Neurogastroenterology and Motility</i> , 2003 , 15, 655-62 Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G1028 Comparison of quality of life and anorectal function after artificial sphincter implantation. <i>Diseases of the Colon and Rectum</i> , 2002 , 45, 508-13	5.1 4 4 3.56 3.1	34 46 29 124 67

LIST OF PUBLICATIONS

12	Journal of Physiology, 2001 , 536, 741-51	3.9	62
11	Multisite optical recording of excitability in the enteric nervous system. <i>Neurogastroenterology and Motility</i> , 1999 , 11, 393-402	4	49
10	Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. <i>Journal of Physiology</i> , 1999 , 517 (Pt 2), 533-46	3.9	85
9	Different tachykinin receptors mediate chloride secretion in the distal colon through activation of submucosal neurones. <i>Naunyn-Schmiedebergm Archives of Pharmacology</i> , 1999 , 359, 71-9	3.4	38
8	The enteric nervous system: region and target specific projections and neurochemical codes. <i>European Journal of Morphology</i> , 1999 , 37, 233-40		14
7	Polarized enteric submucosal circuits involved in secretory responses of the guinea-pig proximal colon. <i>Journal of Physiology</i> , 1998 , 506 (Pt 2), 539-50	3.9	32
6	Polarised innervation pattern of the mucosa of the guinea pig distal colon. <i>Neuroscience Letters</i> , 1998 , 246, 161-4	3.3	22
5	Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. <i>Biophysical Journal</i> , 1995 , 68, 2310-22	2.9	121
4	Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode. <i>PACE - Pacing and Clinical Electrophysiology</i> , 1994 , 17, 1641-54	1.6	30
3	Regional depolarization of cardiac muscle adjacent to an epicardial stimulating anode. <i>American Heart Journal</i> , 1992 , 124, 834	4.9	3
2	Design and use of an "optrode" for optical recordings of cardiac action potentials. <i>Pflugers Archiv European Journal of Physiology</i> , 1992 , 420, 611-7	4.6	41
1	MiBiOmics: An interactive web application for multi-omics data exploration and integration		1