Kun Liang Guan

List of Publications by Citations

Source: https://exaly.com/author-pdf/8087027/kun-liang-guan-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47,845 80 192 175 h-index g-index citations papers 56,118 15.8 7.82 192 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
175	AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. <i>Nature Cell Biology</i> , 2011 , 13, 132-41	23.4	4181
174	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
173	TSC2 mediates cellular energy response to control cell growth and survival. <i>Cell</i> , 2003 , 115, 577-90	56.2	2953
172	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-	5 46 .2	2783
171	TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. <i>Nature Cell Biology</i> , 2002 , 4, 648-57	23.4	2352
170	Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. <i>Genes and Development</i> , 2007 , 21, 2747-61	12.6	1938
169	Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of Eketoglutarate-dependent dioxygenases. <i>Cancer Cell</i> , 2011 , 19, 17-30	24.3	1919
168	TEAD mediates YAP-dependent gene induction and growth control. <i>Genes and Development</i> , 2008 , 22, 1962-71	12.6	1534
167	Regulation of cellular metabolism by protein lysine acetylation. <i>Science</i> , 2010 , 327, 1000-4	33.3	1394
166	Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. <i>Genes and Development</i> , 2003 , 17, 1829-34	12.6	1333
165	Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. <i>Cell</i> , 2015 , 163, 811-28	56.2	1185
164	Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. <i>Cell</i> , 2012 , 150, 780-91	56.2	1028
163	TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. <i>Cell</i> , 2006 , 126, 955-68	56.2	1028
162	Regulation of TORC1 by Rag GTPases in nutrient response. <i>Nature Cell Biology</i> , 2008 , 10, 935-45	23.4	949
161	A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). <i>Genes and Development</i> , 2010 , 24, 72-85	12.6	849
160	Mechanisms of Hippo pathway regulation. <i>Genes and Development</i> , 2016 , 30, 1-17	12.6	834
159	The Hippo pathway: regulators and regulations. <i>Genes and Development</i> , 2013 , 27, 355-71	12.6	818

(2015-2005)

158	Dysregulation of the TSC-mTOR pathway in human disease. <i>Nature Genetics</i> , 2005 , 37, 19-24	36.3	812
157	The emerging roles of YAP and TAZ in cancer. <i>Nature Reviews Cancer</i> , 2015 , 15, 73-79	31.3	705
156	Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. <i>Cell</i> , 2013 , 152, 290-303	56.2	526
155	Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. <i>Genes and Development</i> , 2012 , 26, 54-68	12.6	522
154	Autophagy regulation by nutrient signaling. <i>Cell Research</i> , 2014 , 24, 42-57	24.7	478
153	Metabolism. Differential regulation of mTORC1 by leucine and glutamine. <i>Science</i> , 2015 , 347, 194-8	33.3	442
152	mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 2019, 21, 63-71	23.4	412
151	Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. <i>Molecular Cell</i> , 2011 , 42, 719-30	17.6	404
150	The Hippo signaling pathway in stem cell biology and cancer. EMBO Reports, 2014, 15, 642-56	6.5	400
7.40			
149	Alternative Wnt Signaling Activates YAP/TAZ. <i>Cell</i> , 2015 , 162, 780-94	56.2	393
148	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62	50.4	
· ·			
148	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62 TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal	50.4	387 385
148	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62 TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. <i>Journal of Biological Chemistry</i> , 2009 , 284, 13355-13362 Identification of Sin1 as an essential TORC2 component required for complex formation and kinase	50.4 5·4	387 385
148 147 146	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62 TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. <i>Journal of Biological Chemistry</i> , 2009 , 284, 13355-13362 Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. <i>Genes and Development</i> , 2006 , 20, 2820-32 The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and	50.4 5.4 12.6	387 385 384
148 147 146	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62 TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. <i>Journal of Biological Chemistry</i> , 2009 , 284, 13355-13362 Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. <i>Genes and Development</i> , 2006 , 20, 2820-32 The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. <i>Journal of Biological Chemistry</i> , 2010 , 285, 37159-69	50.4 5.4 12.6	387 385 384 342
148 147 146 145	A gp130-Src-YAP module links inflammation to epithelial regeneration. <i>Nature</i> , 2015 , 519, 57-62 TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. <i>Journal of Biological Chemistry</i> , 2009 , 284, 13355-13362 Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. <i>Genes and Development</i> , 2006 , 20, 2820-32 The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. <i>Journal of Biological Chemistry</i> , 2010 , 285, 37159-69 YAP and TAZ: a nexus for Hippo signaling and beyond. <i>Trends in Cell Biology</i> , 2015 , 25, 499-513 Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. <i>Nature</i>	50.4 5.4 12.6 5.4 18.3	387 385 384 342 335

140	Regulation of intermediary metabolism by protein acetylation. <i>Trends in Biochemical Sciences</i> , 2011 , 36, 108-16	10.3	272
139	Nutrient signaling to mTOR and cell growth. <i>Trends in Biochemical Sciences</i> , 2013 , 38, 233-42	10.3	265
138	The Hippo Pathway: Biology and Pathophysiology. <i>Annual Review of Biochemistry</i> , 2019 , 88, 577-604	29.1	253
137	Sestrins inhibit mTORC1 kinase activation through the GATOR complex. <i>Cell Reports</i> , 2014 , 9, 1281-91	10.6	223
136	Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. <i>Molecular Cell</i> , 2013 , 51, 506-518	17.6	217
135	The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. <i>Cell</i> , 2016 , 167, 1525-1539.e17	56.2	214
134	Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). <i>Genes and Development</i> , 2012 , 26, 2138-43	12.6	210
133	A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. <i>Genes and Development</i> , 2015 , 29, 1271-84	12.6	208
132	WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. <i>Molecular Cell</i> , 2015 , 57, 662-673	17.6	198
131	Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11525-11530) ^{11.5}	197
130	Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. <i>Molecular and Cellular Biology</i> , 2004 , 24, 7965-75	4.8	192
129	Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. <i>Autophagy</i> , 2013 , 9, 1983-95	10.2	181
128	Amino acid signaling in TOR activation. <i>Annual Review of Biochemistry</i> , 2011 , 80, 1001-32	29.1	176
127	Mechanistic insights into the regulation of metabolic enzymes by acetylation. <i>Journal of Cell Biology</i> , 2012 , 198, 155-64	7.3	168
126	Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. <i>EMBO Journal</i> , 2014 , 33, 1304-20	13	161
125	Disease implications of the Hippo/YAP pathway. <i>Trends in Molecular Medicine</i> , 2015 , 21, 212-22	11.5	157
124	RAP2 mediates mechanoresponses of the Hippo pathway. <i>Nature</i> , 2018 , 560, 655-660	50.4	157
123	Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. <i>Cancer Research</i> , 2009 , 69, 1089-98	10.1	155

(2015-2017)

122	A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. <i>Nature Methods</i> , 2017 , 14, 629-635	21.6	144	
121	Characterization of Hippo Pathway Components by Gene Inactivation. <i>Molecular Cell</i> , 2016 , 64, 993-100	0817.6	142	
120	The Hippo pathway in intestinal regeneration and disease. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2016 , 13, 324-37	24.2	139	•
119	The hippo pathway in heart development, regeneration, and diseases. <i>Circulation Research</i> , 2015 , 116, 1431-47	15.7	138	
118	Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 2018, 28, 196-206	24.6	137	
117	AMPK and autophagy in glucose/glycogen metabolism. <i>Molecular Aspects of Medicine</i> , 2015 , 46, 46-62	16.7	134	
116	Regulation of the Hippo Pathway Transcription Factor TEAD. <i>Trends in Biochemical Sciences</i> , 2017 , 42, 862-872	10.3	131	
115	SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. <i>EMBO Reports</i> , 2016 , 17, 811-22	6.5	127	
114	Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. <i>Nature Reviews Drug Discovery</i> , 2020 , 19, 480-494	64.1	119	
113	Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. <i>Nature Cell Biology</i> , 2015 , 17, 1379-87	23.4	118	
112	The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. <i>Cell Research</i> , 2015 , 25, 1299-313	24.7	115	
111	Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. <i>Cell Reports</i> , 2015 , 13, 2353-2361	10.6	115	
110	The Hippo pathway in organ development, homeostasis, and regeneration. <i>Current Opinion in Cell Biology</i> , 2017 , 49, 99-107	9	115	
109	Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. <i>Journal of Biological Chemistry</i> , 2013 , 288, 34041-34051	5.4	114	
108	The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. <i>Journal of Biological Chemistry</i> , 2018 , 293, 11230-11240	5.4	108	
107	Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. <i>Nature Cell Biology</i> , 2017 , 19, 362-374	23.4	107	
106	Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. <i>Nature Cell Biology</i> , 2017 , 19, 996-1002	23.4	106	
105	Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. <i>Scientific Reports</i> , 2015 , 5, 9502	4.9	103	

104	Regulation of mTORC1 by the Rab and Arf GTPases. <i>Journal of Biological Chemistry</i> , 2010 , 285, 19705-9	5.4	103
103	SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. <i>EMBO Journal</i> , 2015 , 34, 1110-25	13	102
102	Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. <i>Cancer Research</i> , 2014 , 74, 3630-42	10.1	101
101	mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT. <i>Molecular Cell</i> , 2017 , 67, 128-138.e7	17.6	99
100	Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. <i>Trends in Cancer</i> , 2018 , 4, 151-165	12.5	99
99	SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. <i>EMBO Reports</i> , 2018 , 19,	6.5	92
98	A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. <i>Genome Research</i> , 2016 , 26, 397-405	9.7	86
97	A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. <i>Nature Communications</i> , 2018 , 9, 1061	17.4	84
96	Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. <i>Journal of Clinical Investigation</i> , 2018 , 128, 970-984	15.9	81
95	Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. <i>Molecular Cell</i> , 2014 , 54, 378-91	17.6	79
94	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. <i>Cancer Cell</i> , 2017 , 32, 856-868.e5	24.3	78
93	YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. <i>Nature Communications</i> , 2014 , 5, 4629	17.4	75
92	Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. <i>Nature Communications</i> , 2018 , 9, 508	17.4	73
91	Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. <i>EMBO Reports</i> , 2017 , 18, 72-86	56.5	72
90	Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In[Vivo Persistence and Enhances Anti-tumor Activity. <i>Cell Stem Cell</i> , 2020 , 27, 224-237.e6	18	71
89	Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. <i>Journal of Biological Chemistry</i> , 2016 , 291, 18947-58	5.4	66
88	Structural basis for the unique biological function of small GTPase RHEB. <i>Journal of Biological Chemistry</i> , 2005 , 280, 17093-100	5.4	65
87	Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. <i>Oncogene</i> , 2018 , 37, 1637-1653	9.2	63

(2019-2014)

86	Rag GTPases are cardioprotective by regulating lysosomal function. <i>Nature Communications</i> , 2014 , 5, 4241	17.4	63
85	Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. <i>Nature Communications</i> , 2018 , 9, 2372	17.4	62
84	YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1643-1648	11.5	61
83	OTUB2 Promotes Cancer Metastasis via Hippo-Independent Activation of YAP and TAZ. <i>Molecular Cell</i> , 2019 , 73, 7-21.e7	17.6	58
82	mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. <i>Aging Cell</i> , 2019 , 18, e12943	9.9	52
81	LATS2 suppresses oncogenic Wnt signaling by disrupting Etatenin/BCL9 interaction. <i>Cell Reports</i> , 2013 , 5, 1650-63	10.6	52
80	Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. <i>Genes and Development</i> , 2016 , 30, 1086-100	12.6	50
79	Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Research, 2017, 77, 2413	3 -242 3	49
78	MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. <i>Autophagy</i> , 2017 , 13, 592-607	10.2	48
77	Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. <i>PLoS Biology</i> , 2015 , 13, e1002243	9.7	48
76	Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. <i>Cancer Research</i> , 2016 , 76, 6924-6936	10.1	48
75	Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. <i>Journal of Biological Chemistry</i> , 2009 , 284, 13669-13675	5.4	45
74	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. <i>Cell Metabolism</i> , 2020 , 31, 969-986.e7	24.6	44
73	TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. <i>Cell Research</i> , 2014 , 24, 1017-20	24.7	42
72	D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. <i>Oncotarget</i> , 2015 , 6, 8606-20	3.3	42
71	Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. <i>Molecular Cell</i> , 2018 , 72, 328-340.e8	17.6	41
70	STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. <i>Nature Cell Biology</i> , 2019 , 21, 1565-1577	23.4	40
69	Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. <i>Immunity</i> , 2019 , 51, 1012-1027.e7	32.3	39

68	Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. <i>Liver International</i> , 2020 , 40, 1378-1394	7.9	36
67	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. <i>Oncogene</i> , 2018 , 37, 5492-5507	9.2	35
66	GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. <i>ELife</i> , 2019 , 8,	8.9	35
65	Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. <i>Cell Research</i> , 2015 , 25, 985-8	24.7	34
64	CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis. <i>Molecular Cell</i> , 2017 , 68, 198-209.e6	17.6	33
63	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. <i>Nature Communications</i> , 2015 , 6, 8283	17.4	33
62	PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. <i>EMBO Reports</i> , 2015 , 16, 975-85	6.5	33
61	Volume Adaptation Controls Stem Cell Mechanotransduction. <i>ACS Applied Materials & amp;</i> Interfaces, 2019 , 11, 45520-45530	9.5	32
60	Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. <i>Genes and Development</i> , 2020 , 34, 72-86	12.6	32
59	SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. <i>Cell Reports</i> , 2018 , 25, 1485-1500.e4	10.6	31
58	NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. <i>Genes and Development</i> , 2015 , 29, 2362-76	12.6	29
57	Hippo Signaling in Embryogenesis and Development. <i>Trends in Biochemical Sciences</i> , 2021 , 46, 51-63	10.3	28
56	Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7255-60	11.5	26
55	Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Sells. <i>Cell Reports</i> , 2018 , 25, 1018-1026.e4	10.6	26
54	A Non-Canonical Function of Glas a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation. <i>Molecular Cell</i> , 2015 , 58, 794-803	17.6	23
53	Structural insights of mTOR complex 1. <i>Cell Research</i> , 2016 , 26, 267-8	24.7	23
52	Cell type-dependent function of LATS1/2 in cancer cell growth. <i>Oncogene</i> , 2019 , 38, 2595-2610	9.2	22
51	SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. <i>PLoS ONE</i> , 2019 , 14, e0211796	3.7	21

(2021-2020)

50	Heat stress activates YAP/TAZ to induce the heat shock transcriptome. <i>Nature Cell Biology</i> , 2020 , 22, 1447-1459	23.4	19
49	Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor Growth of -deficient Mesothelioma. <i>Molecular Cancer Therapeutics</i> , 2021 , 20, 986-998	6.1	18
48	YAP and TAZ regulate cell volume. <i>Journal of Cell Biology</i> , 2019 , 218, 3472-3488	7.3	16
47	The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. <i>Cell Death and Disease</i> , 2019 , 10, 755	9.8	16
46	Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	15
45	YAP/TAZ phase separation for transcription. <i>Nature Cell Biology</i> , 2020 , 22, 357-358	23.4	15
44	YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations. <i>Molecular and Cellular Oncology</i> , 2015 , 2, e970957	1.2	15
43	Measurements of TSC2 GAP activity toward Rheb. <i>Methods in Enzymology</i> , 2006 , 407, 46-54	1.7	14
42	Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. <i>ELife</i> , 2019 , 8,	8.9	14
41	YAP as oncotarget in uveal melanoma. <i>Oncoscience</i> , 2014 , 1, 480-1	0.8	13
40	Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. <i>Annual Review of Cancer Biology</i> , 2018 , 2, 59-79	13.3	13
40			,
	Biology, 2018 , 2, 59-79 Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult	13.3	,
39	Biology, 2018, 2, 59-79 Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. <i>Cell Reports</i> , 2018, 24, 463-478.e5 BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. <i>Proceedings of</i>	13.3 10.6 11.5	11
39	Biology, 2018, 2, 59-79 Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. <i>Cell Reports</i> , 2018, 24, 463-478.e5 BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019, 116, 7363-7370 Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. <i>Genes and Development</i> ,	13.3 10.6 11.5	11 10
39 38 37	Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. <i>Cell Reports</i> , 2018 , 24, 463-478.e5 BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7363-7370 Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. <i>Genes and Development</i> , 2020 , 34, 511-525 SIRT7 deacetylates DDB1 and suppresses the activity of the CRL4 E3 ligase complexes. <i>FEBS</i>	13.3 10.6 11.5	11 10 10
39 38 37 36	Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. <i>Cell Reports</i> , 2018 , 24, 463-478.e5 BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7363-7370 Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. <i>Genes and Development</i> , 2020 , 34, 511-525 SIRT7 deacetylates DDB1 and suppresses the activity of the CRL4 E3 ligase complexes. <i>FEBS Journal</i> , 2017 , 284, 3619-3636	13.3 10.6 11.5 12.6	11 10 10

32	Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. <i>Laboratory Investigation</i> , 2019 , 99, 588-598	5.9	10
31	Hypertension-associated C825T polymorphism impairs the function of GB to target GRK2 ubiquitination. <i>Cell Discovery</i> , 2016 , 2, 16005	22.3	9
30	EIF3H Orchestrates Hippo Pathway-Mediated Oncogenesis via Catalytic Control of YAP Stability. <i>Cancer Research</i> , 2020 , 80, 2550-2563	10.1	9
29	Structural insights into TSC complex assembly and GAP activity on Rheb. <i>Nature Communications</i> , 2021 , 12, 339	17.4	9
28	Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. <i>Protein and Cell</i> , 2021 , 12, 557-577	7.2	7
27	The two sides of Hippo pathway in cancer. Seminars in Cancer Biology, 2021,	12.7	7
26	Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. <i>Science Advances</i> , 2021 , 7,	14.3	7
25	Micro(RNA) managing by mTORC1. <i>Molecular Cell</i> , 2015 , 57, 575-576	17.6	6
24	The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to Promote Reprogramming. <i>Cell Reports</i> , 2020 , 32, 107877	10.6	6
23	An alternative DNA damage pathway to apoptosis in hematological cancers. <i>Nature Medicine</i> , 2014 , 20, 587-8	50.5	5
22	ELP3 Acetyltransferase is phosphorylated and regulated by the oncogenic anaplastic lymphoma kinase (ALK). <i>Biochemical Journal</i> , 2019 , 476, 2239-2254	3.8	5
21	Determining the Phosphorylation Status of Hippo Components YAP and TAZ Using Phos-tag. <i>Methods in Molecular Biology</i> , 2019 , 1893, 281-287	1.4	5
20	The multifaceted role of autophagy in cancer EMBO Journal, 2022, e110031	13	5
19	TAZ Represses the Neuronal Commitment of Neural Stem Cells. <i>Cells</i> , 2020 , 9,	7.9	4
18	Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses <i>Nature Cell Biology</i> , 2022 ,	23.4	4
17	Hippo pathway key to ploidy checkpoint. <i>Cell</i> , 2014 , 158, 695-696	56.2	3
16	Notch Activation Rescues Exhaustion in CISH-Deleted Human iPSC-Derived Natural Killer Cells to Promote In Vivo Persistence and Enhance Anti-Tumor Activity. <i>Blood</i> , 2018 , 132, 1279-1279	2.2	3
15	Non-radioactive LATS Kinase Assay. <i>Bio-protocol</i> , 2017 , 7,	0.9	3

LIST OF PUBLICATIONS

14	A WW Tandem-Mediated Dimerization Mode of SAV1 Essential for Hippo Signaling. <i>Cell Reports</i> , 2020 , 32, 108118	10.6	3
13	Glycoholics Anonymous: Cancer Sobers Up with mTORC1. Cancer Cell, 2016, 29, 432-434	24.3	2
12	Colonic epithelium rejuvenation through YAP/TAZ. EMBO Journal, 2018, 37, 164-166	13	1
11	Tales from the Cryptkeeper: New Roles for Lats1/2 in Wnt-driven Homeostasis. <i>Cell Stem Cell</i> , 2020 , 26, 612-614	18	1
10	Co-occurrence of BAP1 and SF3B1 mutations in uveal melanoma induces cellular senescence. <i>Molecular Oncology</i> , 2021 ,	7.9	1
9	Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER breast cancer <i>Nature Communications</i> , 2022 , 13, 1061	17.4	Ο
8	A special issue to mark the 90th Anniversary of College of Life Sciences, Zhejiang University. <i>Journal of Zhejiang University: Science B</i> , 2019 , 20, 371-372	4.5	
7	Protocols for measuring phosphorylation, subcellular localization, and kinase activity of Hippo pathway components YAP and LATS in cultured cells <i>STAR Protocols</i> , 2022 , 3, 101102	1.4	
6	Regulation and function of the TSC-mTOR pathway in cell growth. FASEB Journal, 2008, 22, 263.1	0.9	
5	Hippo pathway in nutrient response and cell growth. <i>FASEB Journal</i> , 2018 , 32, 379.1	0.9	
4	RUNX1-ETO-Dependent Transcriptional Repression of RASSF2 Contributes to t(8;21) Leukemia through Evasion of MST1-Driven Apoptosis Signaling. <i>Blood</i> , 2016 , 128, 1547-1547	2.2	
3	SIRT3 Promotes the Urea Cycle by Deacetylating Ornithine Transcarbamoylase. <i>FASEB Journal</i> , 2010 , 24, 662.3	0.9	
2	AMPK and mTOR in nutrient signaling and autophagy regulation. FASEB Journal, 2013, 27, 99.1	0.9	
1	c-Jun N-Terminal Kinase 1 (JNK1) Is Required for Coordination of Netrin Signaling in Axon Guidance. <i>FASEB Journal</i> , 2013 , 27, 831.13	0.9	