Kun Liang Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8087027/publications.pdf

Version: 2024-02-01

3721 3903 62,405 181 89 177 citations h-index g-index papers 192 192 192 67322 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13, 132-141.	4.6	5,447
2	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
3	TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 2003, 115, 577-590.	13.5	3,362
4	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
5	TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 2002, 4, 648-657.	4.6	2,667
6	Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 2007, 21, 2747-2761.	2.7	2,487
7	Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of $\hat{l}\pm$ -Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 2011, 19, 17-30.	7.7	2,340
8	TEAD mediates YAP-dependent gene induction and growth control. Genes and Development, 2008, 22, 1962-1971.	2.7	1,943
9	Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015, 163, 811-828.	13.5	1,716
10	Regulation of Cellular Metabolism by Protein Lysine Acetylation. Science, 2010, 327, 1000-1004.	6.0	1,642
11	Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development, 2003, 17, 1829-1834.	2.7	1,566
12	Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 2012, 150, 780-791.	13.5	1,310
13	Mechanisms of Hippo pathway regulation. Genes and Development, 2016, 30, 1-17.	2.7	1,224
14	TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell, 2006, 126, 955-968.	13.5	1,183
15	Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biology, 2008, 10, 935-945.	4.6	1,143
16	A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF $<$ sup $>$ \hat{I}^2 -TRCP $<$ /sup $>$. Genes and Development, 2010, 24, 72-85.	2.7	1,100
17	The Hippo pathway: regulators and regulations. Genes and Development, 2013, 27, 355-371.	2.7	1,034
18	The emerging roles of YAP and TAZ in cancer. Nature Reviews Cancer, 2015, 15, 73-79.	12.8	928

#	Article	IF	CITATIONS
19	Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics, 2005, 37, 19-24.	9.4	911
20	The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 2019, 88, 577-604.	5.0	708
21	mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 2019, 21, 63-71.	4.6	698
22	Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell, 2013, 152, 290-303.	13.5	646
23	Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes and Development, 2012, 26, 54-68.	2.7	632
24	Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57.	5.7	601
25	Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.	6.0	585
26	The Hippo signaling pathway in stem cell biology and cancer. EMBO Reports, 2014, 15, 642-656.	2.0	532
27	A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature, 2015, 519, 57-62.	13.7	528
28	Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015, 162, 780-794.	13.5	528
29	Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth. Molecular Cell, 2011, 42, 719-730.	4.5	479
30	TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2009, 284, 13355-13362.	1.6	470
31	YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology, 2015, 25, 499-513.	3.6	445
32	Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes and Development, 2006, 20, 2820-2832.	2.7	434
33	The Hippo Tumor Pathway Promotes TAZ Degradation by Phosphorylating a Phosphodegron and Recruiting the SCFÎ ² -TrCP E3 Ligase. Journal of Biological Chemistry, 2010, 285, 37159-37169.	1.6	422
34	Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 2015, 17, 500-510.	4.6	421
35	Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature Reviews Drug Discovery, 2020, 19, 480-494.	21.5	396
36	Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP. Cancer Cell, 2014, 25, 822-830.	7.7	391

#	Article	IF	CITATIONS
37	MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.	5.8	388
38	Nutrient signaling to mTOR and cell growth. Trends in Biochemical Sciences, 2013, 38, 233-242.	3.7	327
39	Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 2011, 36, 108-116.	3.7	323
40	Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11525-11530.	3.3	323
41	The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell, 2016, 167, 1525-1539.e17.	13.5	318
42	Acetylation Stabilizes ATP-Citrate Lyase to Promote Lipid Biosynthesis and Tumor Growth. Molecular Cell, 2013, 51, 506-518.	4.5	291
43	Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 2018, 28, 196-206.	7.2	281
44	A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.	2.7	278
45	Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex. Cell Reports, 2014, 9, 1281-1291.	2.9	273
46	RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.	13.7	266
47	Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9, 1983-1995.	4.3	249
48	WT1 Recruits TET2 to Regulate Its Target Gene Expression and Suppress Leukemia Cell Proliferation. Molecular Cell, 2015, 57, 662-673.	4.5	242
49	Regulation of the Hippo–YAP pathway by protease-activated receptors (PARs). Genes and Development, 2012, 26, 2138-2143.	2.7	239
50	Biochemical and Functional Characterizations of Small GTPase Rheb and TSC2 GAP Activity. Molecular and Cellular Biology, 2004, 24, 7965-7975.	1.1	226
51	Characterization of Hippo Pathway Components by Gene Inactivation. Molecular Cell, 2016, 64, 993-1008.	4.5	219
52	Regulation of the Hippo Pathway Transcription Factor TEAD. Trends in Biochemical Sciences, 2017, 42, 862-872.	3.7	218
53	A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nature Methods, 2017, 14, 629-635.	9.0	217
54	<scp>SIRT</scp> 5 promotes <scp>IDH</scp> 2 desuccinylation and G6 <scp>PD</scp> deglutarylation to enhance cellular antioxidant defense. EMBO Reports, 2016, 17, 811-822.	2.0	210

#	Article	IF	CITATIONS
55	Regulation of G6PD acetylation by KAT9/SIRT2 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO Journal, 2014, 33, 1304-20.	3.5	205
56	The Hippo pathway in intestinal regeneration and disease. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 324-337.	8.2	204
57	Amino Acid Signaling in TOR Activation. Annual Review of Biochemistry, 2011, 80, 1001-1032.	5.0	202
58	Mechanistic insights into the regulation of metabolic enzymes by acetylation. Journal of Cell Biology, 2012, 198, 155-164.	2.3	202
59	Disease implications of the Hippo/YAP pathway. Trends in Molecular Medicine, 2015, 21, 212-222.	3.5	191
60	The Hippo Pathway in Heart Development, Regeneration, and Diseases. Circulation Research, 2015, 116, 1431-1447.	2.0	178
61	Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes InÂVivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell, 2020, 27, 224-237.e6.	5.2	177
62	The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology, 2017, 49, 99-107.	2.6	176
63	Both TEAD-Binding and WW Domains Are Required for the Growth Stimulation and Oncogenic Transformation Activity of Yes-Associated Protein. Cancer Research, 2009, 69, 1089-1098.	0.4	175
64	AMPK and autophagy in glucose/glycogen metabolism. Molecular Aspects of Medicine, 2015, 46, 46-62.	2.7	175
65	$\langle \text{scp} \rangle \text{SIRT} \langle \text{scp} \rangle$ 5 inhibits peroxisomal $\langle \text{scp} \rangle \text{ACOX} \langle \text{scp} \rangle$ 1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Reports, 2018, 19, .	2.0	171
66	The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Research, 2015, 25, 1299-1313.	5.7	164
67	The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. Journal of Biological Chemistry, 2018, 293, 11230-11240.	1.6	164
68	Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends in Cancer, 2018, 4, 151-165.	3.8	160
69	Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Reports, 2015, 13, 2353-2361.	2.9	153
70	Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nature Cell Biology, 2015, 17, 1379-1387.	4.6	153
71	Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nature Cell Biology, 2017, 19, 362-374.	4.6	153
72	Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nature Cell Biology, 2017, 19, 996-1002.	4.6	153

#	Article	IF	CITATIONS
73	<scp>SIRT</scp> 3â€dependent <scp>GOT</scp> 2 acetylation status affects the malate–aspartate <scp>NADH</scp> shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.	3.5	152
74	mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT. Molecular Cell, 2017, 67, 128-138.e7.	4.5	147
75	Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Scientific Reports, 2015, 5, 9502.	1.6	137
76	Targeting ferroptosis alleviates methionine holine deficient (MCD)â€diet induced NASH by suppressing liver lipotoxicity. Liver International, 2020, 40, 1378-1394.	1.9	135
77	Phosphorylation of Angiomotin by Lats 1/2 Kinases Inhibits F-actin Binding, Cell Migration, and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 34041-34051.	1.6	133
78	Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nature Communications, 2018, 9, 508.	5.8	127
79	Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene, 2018, 37, 1637-1653.	2.6	125
80	Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase. Cancer Research, 2014, 74, 3630-3642.	0.4	124
81	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.	7.7	121
82	A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nature Communications, 2018, 9, 1061.	5.8	121
83	Regulation of mTORC1 by the Rab and Arf GTPases. Journal of Biological Chemistry, 2010, 285, 19705-19709.	1.6	120
84	Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nature Communications, 2018, 9, 2372.	5.8	119
85	Hippo Signaling in Embryogenesis and Development. Trends in Biochemical Sciences, 2021, 46, 51-63.	3.7	118
86	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	7.2	117
87	Claudin-18–mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. Journal of Clinical Investigation, 2018, 128, 970-984.	3.9	115
88	Osmotic stressâ€induced phosphorylation by <scp>NLK</scp> at Ser128 activates <scp>YAP</scp> . EMBO Reports, 2017, 18, 72-86.	2.0	112
89	OTUB2 Promotes Cancer Metastasis via Hippo-Independent Activation of YAP and TAZ. Molecular Cell, 2019, 73, 7-21.e7.	4.5	112
90	A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Research, 2016, 26, 397-405.	2.4	111

#	Article	IF	CITATIONS
91	Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.	4.5	105
92	mTORC1 underlies ageâ€related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell, 2019, 18, e12943.	3.0	104
93	Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor Growth of <i>NF2</i> -deficient Mesothelioma. Molecular Cancer Therapeutics, 2021, 20, 986-998.	1.9	101
94	STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nature Cell Biology, 2019, 21, 1565-1577.	4.6	98
95	YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nature Communications, 2014, 5, 4629.	5.8	95
96	Destabilization of Fatty Acid Synthase by Acetylation Inhibits <i>De Novo</i> Lipogenesis and Tumor Cell Growth. Cancer Research, 2016, 76, 6924-6936.	0.4	92
97	Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2016, 291, 18947-18958.	1.6	88
98	YAP–IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1643-1648.	3.3	85
99	Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. Immunity, 2019, 51, 1012-1027.e7.	6.6	76
100	Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Molecular Cell, 2018, 72, 328-340.e8.	4.5	74
101	Structural Basis for the Unique Biological Function of Small GTPase RHEB. Journal of Biological Chemistry, 2005, 280, 17093-17100.	1.6	73
102	Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241.	5.8	73
103	Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. PLoS Biology, 2015, 13, e1002243.	2.6	72
104	MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy, 2017, 13, 592-607.	4.3	71
105	LATS2 Suppresses Oncogenic Wnt Signaling by Disrupting \hat{l}^2 -Catenin/BCL9 Interaction. Cell Reports, 2013, 5, 1650-1663.	2.9	69
106	Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes and Development, 2016, 30, 1086-1100.	2.7	68
107	Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes and Development, 2020, 34, 72-86.	2.7	68
108	Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nature Cell Biology, 2022, 24, 353-363.	4.6	67

#	Article	IF	Citations
109	Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Research, 2017, 77, 2413-2423.	0.4	63
110	SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Reports, 2018, 25, 1485-1500.e4.	2.9	63
111	The multifaceted role of autophagy in cancer. EMBO Journal, 2022, 41, e110031.	3.5	63
112	GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. ELife, 2019, 8, .	2.8	60
113	Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45520-45530.	4.0	57
114	Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells. Cell Reports, 2018, 25, 1018-1026.e4.	2.9	56
115	Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nature Cell Biology, 2020, 22, 1447-1459.	4.6	56
116	Lysine 88 Acetylation Negatively Regulates Ornithine Carbamoyltransferase Activity in Response to Nutrient Signals. Journal of Biological Chemistry, 2009, 284, 13669-13675.	1.6	55
117	Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature Communications, 2022, 13, 1061.	5. 8	55
118	Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Research, 2015, 25, 985-988.	5.7	54
119	CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis. Molecular Cell, 2017, 68, 198-209.e6.	4.5	53
120	TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Research, 2014, 24, 1017-1020.	5.7	51
121	Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. Journal of Hepatology, 2022, 77, 453-466.	1.8	50
122	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	2.6	49
123	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283.	5.8	47
124	<pre><scp>PARD</scp> 3 induces <scp>TAZ</scp> activation and cell growth by promoting <scp>LATS</scp> 1 and <scp>PP</scp> 1 interaction. EMBO Reports, 2015, 16, 975-985.</pre>	2.0	46
125	The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell Death and Disease, 2019, 10, 755.	2.7	46
126	D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget, 2015, 6, 8606-8620.	0.8	46

#	Article	IF	Citations
127	The SIN1-PH Domain Connects mTORC2 to PI3K. Cancer Discovery, 2015, 5, 1127-1129.	7.7	44
128	Structural insights into TSC complex assembly and GAP activity on Rheb. Nature Communications, 2021, 12, 339.	5.8	44
129	SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 2019, 14, e0211796.	1.1	40
130	YAP and TAZ regulate cell volume. Journal of Cell Biology, 2019, 218, 3472-3488.	2.3	39
131	Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes and Development, 2020, 34, 511-525.	2.7	39
132	Hippo signalling maintains ER expression and ER+ breast cancer growth. Nature, 2021, 591, E1-E10.	13.7	38
133	Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. ELife, 2019, 8, .	2.8	38
134	NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376.	2.7	37
135	Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7255-7260.	3.3	34
136	The two sides of Hippo pathway in cancer. Seminars in Cancer Biology, 2022, 85, 33-42.	4.3	34
137	A Non-Canonical Function of $G\hat{I}^2$ as a Subunit of E3 Ligase in Targeting GRK2ÂUbiquitylation. Molecular Cell, 2015, 58, 794-803.	4.5	30
138	Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene, 2019, 38, 2595-2610.	2.6	29
139	YAP plays a crucial role in the development of cardiomyopathy in lysosomal storage diseases. Journal of Clinical Investigation, 2021, 131, .	3.9	29
140	Structural insights of mTOR complex 1. Cell Research, 2016, 26, 267-268.	5.7	28
141	<i>L2hgdh</i> Deficiency Accumulates <scp>I</scp> -2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration. Molecular and Cellular Biology, 2017, 37, .	1.1	27
142	YAP/TAZ phase separation for transcription. Nature Cell Biology, 2020, 22, 357-358.	4.6	24
143	EIF3H Orchestrates Hippo Pathway–Mediated Oncogenesis via Catalytic Control of YAP Stability. Cancer Research, 2020, 80, 2550-2563.	0.4	24
144	The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to Promote Reprogramming. Cell Reports, 2020, 32, 107877.	2.9	22

#	Article	IF	CITATIONS
145	Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. Cell Reports, 2018, 24, 463-478.e5.	2.9	21
146	Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. Science Advances, $2021, 7, .$	4.7	21
147	Polycystic kidney disease: a Hippo connection. Genes and Development, 2018, 32, 737-739.	2.7	20
148	YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations. Molecular and Cellular Oncology, 2015, 2, e970957.	0.3	18
149	Measurements of TSC2 GAP Activity Toward Rheb. Methods in Enzymology, 2006, 407, 46-54.	0.4	17
150	BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7363-7370.	3.3	17
151	Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. Laboratory Investigation, 2019, 99, 588-598.	1.7	16
152	A WW Tandem-Mediated Dimerization Mode of SAV1 Essential for Hippo Signaling. Cell Reports, 2020, 32, 108118.	2.9	16
153	Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. Annual Review of Cancer Biology, 2018, 2, 59-79.	2.3	14
154	Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein and Cell, 2021, 12, 557-577.	4.8	14
155	YAP as oncotarget in uveal melanoma. Oncoscience, 2014, 1, 480-481.	0.9	14
156	Hypertension-associated C825T polymorphism impairs the function of $G\hat{l}^2$ 3 to target GRK2 ubiquitination. Cell Discovery, 2016, 2, 16005.	3.1	13
157	<scp>SIRT</scp> 7 deacetylates <scp>DDB</scp> 1 and suppresses the activity of the <scp>CRL</scp> 4 E3 ligase complexes. FEBS Journal, 2017, 284, 3619-3636.	2.2	12
158	Coâ€occurrence of <i>BAP1</i> and <i>SF3B1</i> mutations in uveal melanoma induces cellular senescence. Molecular Oncology, 2022, 16, 607-629.	2.1	12
159	Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nature Chemical Biology, 2022, 18, 1076-1086.	3.9	12
160	TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells, 2020, 9, 2230.	1.8	9
161	Determining the Phosphorylation Status of Hippo Components YAP and TAZ Using Phos-tag. Methods in Molecular Biology, 2019, 1893, 281-287.	0.4	7
162	ELP3 Acetyltransferase is phosphorylated and regulated by the oncogenic anaplastic lymphoma kinase (ALK). Biochemical Journal, 2019, 476, 2239-2254.	1.7	7

#	Article	IF	Citations
163	Non-radioactive LATS in vitro Kinase Assay. Bio-protocol, 2017, 7, .	0.2	7
164	Micro(RNA) Managing by mTORC1. Molecular Cell, 2015, 57, 575-576.	4.5	6
165	Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chemical Biology, 2022, 29, 1037-1045.e4.	2.5	6
166	The Hippo pathway mediates Semaphorin signaling. Science Advances, 2022, 8, .	4.7	6
167	An alternative DNA damage pathway to apoptosis in hematological cancers. Nature Medicine, 2014, 20, 587-588.	15.2	5
168	RUNX1-ETO-Dependent Transcriptional Repression of RASSF2 Contributes to t(8;21) Leukemia through Evasion of MST1-Driven Apoptosis Signaling. Blood, 2016, 128, 1547-1547.	0.6	5
169	Notch Activation Rescues Exhaustion in CISH-Deleted Human iPSC-Derived Natural Killer Cells to Promote In Vivo Persistence and Enhance Anti-Tumor Activity. Blood, 2018, 132, 1279-1279.	0.6	4
170	Rag GTPases regulate cellular amino acid homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	4
171	Hippo Pathway Key to Ploidy Checkpoint. Cell, 2014, 158, 695-696.	13.5	3
172	Colonic epithelium rejuvenation through <scp>YAP</scp> / <scp>TAZ</scp> . EMBO Journal, 2018, 37, 164-166.	3. 5	3
173	Glycoholics Anonymous: Cancer Sobers Up with mTORC1. Cancer Cell, 2016, 29, 432-434.	7.7	2
174	Tales from the Cryptkeeper: New Roles for Lats 1/2 in Wnt-driven Homeostasis. Cell Stem Cell, 2020, 26, 612-614.	5.2	2
175	A special issue to mark the 90th Anniversary of College of Life Sciences, Zhejiang University. Journal of Zhejiang University: Science B, 2019, 20, 371-372.	1.3	0
176	Regulation and function of the TSCâ€mTOR pathway in cell growth. FASEB Journal, 2008, 22, 263.1.	0.2	0
177	SIRT3 Promotes the Urea Cycle by Deacetylating Ornithine Transcarbamoylase. FASEB Journal, 2010, 24, 662.3.	0.2	0
178	AMPK and mTOR in nutrient signaling and autophagy regulation. FASEB Journal, 2013, 27, 99.1.	0.2	0
179	câ€Jun Nâ€Terminal Kinase 1 (JNK1) Is Required for Coordination of Netrin Signaling in Axon Guidance. FASEB Journal, 2013, 27, 831.13.	0.2	0
180	Hippo pathway in nutrient response and cell growth. FASEB Journal, 2018, 32, 379.1.	0.2	0

#	Article	IF	CITATIONS
181	Protocols for measuring phosphorylation, subcellular localization, and kinase activity of Hippo pathway components YAP and LATS in cultured cells. STAR Protocols, 2022, 3, 101102.	0.5	O