
Christine Ewers-Saucedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086928/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea. Ecology and Evolution, 2022, 12, .	1.9	5
2	Phylogeography in an "oyster―shell provides first insights into the genetic structure of an extinct Ostrea edulis population. Scientific Reports, 2021, 11, 2307.	3.3	3
3	The evolutionary diversity of barnacles, with an updated classification of fossil and living forms. Zoological Journal of the Linnean Society, 2021, 193, 789-846.	2.3	62
4	Natural history collections recapitulate 200 years of faunal change. Royal Society Open Science, 2021, 8, 201983.	2.4	8
5	Complex patterns of secondary spread without loss of genetic diversity in invasive populations of the Asian shore crab Hemigrapsus takanoi (Decapoda) along European coasts. Marine Biology, 2020, 167, 1.	1.5	5
6	First record of the Pacific oyster Magallana gigas (Thunberg, 1793) in the Baltic Sea proper. Marine Biodiversity Records, 2020, 13, .	1.2	8
7	Population Connectivity and Phylogeography of Crustaceans. , 2020, , 440-463.		2
8	Coming and going – Historical distributions of the European oyster Ostrea edulisÂLinnaeus, 1758 and the introduced slipper limpet Crepidula fornicataÂLinnaeus, 1758 in the North Sea. PLoS ONE, 2019, 14, e0224249.	2.5	11
9	Evaluating reasons for biased sex ratios in Crustacea. Invertebrate Reproduction and Development, 2019, 63, 222-230.	0.8	8
10	Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. Ecology and Evolution, 2019, 9, 11434-11447.	1.9	11
11	Towards a barnacle tree of life: integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution. PeerJ, 2019, 7, e7387.	2.0	19
12	Parallel Patterns of Host-Specific Morphology and Genetic Admixture in Sister Lineages of a Commensal Barnacle. Biological Bulletin, 2017, 232, 171-185.	1.8	6
13	The oceanic concordance of phylogeography and biogeography: a case study in <i><scp>N</scp>otochthamalus</i> . Ecology and Evolution, 2016, 6, 4403-4420.	1.9	28
14	The unexpected mating system of the androdioecious barnacle <i>Chelonibia testudinaria</i> (Linnaeus 1758). Molecular Ecology, 2016, 25, 2081-2092.	3.9	12
15	Evolution of male copulatory organs in box crabs (Decapoda: Eubrachyura: Calappidae De Haan, 1833). Journal of Crustacean Biology, 2016, 36, 804-814.	0.8	11
16	Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle <i>Chelonibia testudinaria</i> (Linnaeus, 1758). PeerJ, 2016, 4, e2019.	2.0	10
17	Growth, mortality, and mating group size of an androdioecious barnacle: implications for the evolution of dwarf males. Journal of Crustacean Biology, 2015, 35, 166-176.	0.8	20
18	Functional morphology of the copulatory system of box crabs with long second gonopods (Calappidae, Eubrachyura, Decapoda, Crustacea). Journal of Morphology, 2015, 276, 77-89.	1.2	19

#	Article	IF	CITATIONS
19	Examining an Outlier: Molecular Diversity in the Cirripedia. Integrative and Comparative Biology, 2012, 52, 410-417.	2.0	14
20	Predator/Prey-Interactions Promote Decomposition of Low-Quality Detritus. Wetlands, 2012, 32, 931-938.	1.5	8
21	Mitochondrial lineages in <i>Notochthamalus scabrosus</i> as indicators of coastal recruitment and interactions. Ecology and Evolution, 2012, 2, 1584-1591.	1.9	9
22	First indication of Japanese mitten crabs in Europe and cryptic genetic diversity of invasive Chinese mitten crabs. NeoBiota, 0, 50, 1-29.	1.0	12
23	Genetic and morphological evidence indicates the persistence of Japanese mitten crab mitochondrial DNA in Europe for over 20 years and its introgression into Chinese mitten crabs. NeoBiota, 0, 73, 137-152.	1.0	1