Richard L Karpel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086862/publications.pdf

Version: 2024-02-01

623734 794594 22 630 14 19 citations g-index h-index papers 22 22 22 422 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Crotamine Cell-Penetrating Nanocarriers: Cancer-Targeting and Potential Biotechnological and/or Medical Applications. Methods in Molecular Biology, 2020, 2118, 61-89.	0.9	9
2	Single-stranded nucleic acid binding proteins. Seminars in Cell and Developmental Biology, 2019, 86, 89-91.	5.0	0
3	Design and characterization of crotamine-functionalized gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 163, 1-8.	5.0	14
4	The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies. PLoS ONE, 2018, 13, e0194357.	2.5	6
5	DNA Binding Proteins and Drug Delivery Vehicles: Tales of Elephants and Snakes. Current Protein and Peptide Science, 2015, 16, 718-726.	1.4	1
6	The illusive search for the lowest free energy state of globular proteins and RNAs. DNA Repair, 2014, 21, 158-162.	2.8	0
7	DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE, 2012, 7, e48913.	2.5	31
8	Structural modeling of Gene 32 protein and SSB's roles in DNA replication, recombination and repair. FASEB Journal, 2010, 24, lb48.	0.5	0
9	Quantifying DNA–Protein Interactions by Single Molecule Stretching. Methods in Cell Biology, 2008, 84, 517-540.	1.1	2
10	Salt Dependent Binding of T4 Gene 32 Protein to Single and Double-stranded DNA: Single Molecule Force Spectroscopy Measurements. Journal of Molecular Biology, 2005, 349, 317-330.	4.2	74
11	Theory of Electrostatically Regulated Binding of T4 Gene 32 Protein to Single- and Double-Stranded DNA. Biophysical Journal, 2005, 89, 1941-1956.	0.5	37
12	Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein. Spectroscopy, 2004, 18, 203-211.	0.8	24
13	Mechanical Measurement of Single-molecule Binding Rates: Kinetics of DNA Helix-destabilization by T4 Gene 32 Protein. Journal of Molecular Biology, 2004, 336, 851-870.	4.2	77
14	Kinetic Regulation of Single DNA Molecule Denaturation by T4 Gene 32 Protein Structural Domains. Journal of Molecular Biology, 2003, 327, 571-578.	4.2	77
15	HIV-1 Nucleocapsid Protein as a Nucleic Acid Chaperone: Spectroscopic Study of its Helix-destabilizing Properties, Structural Binding Specificity, and Annealing Activity. Journal of Molecular Biology, 2002, 318, 749-764.	4.2	99
16	LAST Motifs and SMART Domains in Gene 32 Protein: An Unfolding Story of Autoregulation?. IUBMB Life, 2002, 53, 161-166.	3.4	18
17	Domain Effects on the DNA-interactive Properties of Bacteriophage T4 Gene 32 Protein. Journal of Biological Chemistry, 2001, 276, 2509-2516.	3.4	24
18	Details of the nucleic acid binding site of T4 gene 32 protein revealed by proteolysis and DNA T m depression methods 1 1Edited by R. Ebright. Journal of Molecular Biology, 1999, 286, 1107-1121.	4.2	17

#	Article	IF	CITATION
19	Monitoring metal ion flux in reactions of metallothionein and drugâ€modified metallothionein by electrospray mass spectrometry. Protein Science, 1998, 7, 2398-2404.	7.6	80
20	Characterization of a 32-Residue Peptide From Rat DNA Polymerase \hat{l}^2 With Single-Stranded DNA-Binding Affinity. Techniques in Protein Chemistry, 1994, 5, 359-369.	0.3	1
21	Bacteriophage T4 gene 32 protein: Modulation of protein-nucleic acid and protein-protein association by structural domains. Biochemistry, 1993, 32, 9735-9744.	2.5	23
22	Spectroscopic characterization of the copper(I)-thiolate cluster in the DNA-binding domain of yeast ACE1 transcription factor. FEBS Letters, 1991, 281, 205-208.	2.8	16