Gentian Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80862/publications.pdf Version: 2024-02-01

CENTIAN VIIE

#	Article	IF	CITATIONS
1	Holistically modulating charge recombination via trisiloxane surface treatment for efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2022, 896, 162864.	2.8	24
2	Simple furan-based polymers with the self-healing function enable efficient eco-friendly organic solar cells with high stability. Journal of Materials Chemistry C, 2022, 10, 506-516.	2.7	12
3	Efficient and Stable Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells Enabled by Dynamic Vacuumâ€Assisted Lowâ€Temperature Engineering. Solar Rrl, 2022, 6, .	3.1	35
4	A dye-sensitized solar cells with enhanced efficiency based on a "pillared effect―of CoMoP2 @Mxene@CNTs composite counter electrode. Journal of Alloys and Compounds, 2022, 922, 166279.	2.8	13
5	A dye-sensitized solar cell based on magnetic CoP@FeP ₄ @Carbon composite counter electrode generated an efficiency of 9.88%. Inorganic Chemistry Frontiers, 2021, 8, 5034-5044.	3.0	13
6	Efficient and moisture-resistant organic solar cells <i>via</i> simultaneously reducing the surface defects and hydrophilicity of an electron transport layer. Journal of Materials Chemistry C, 2021, 9, 13500-13508.	2.7	15
7	Sodium Molybdate-Assisted Synthesis of a Cobalt Phosphide Hybrid Counter Electrode for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 3851-3860.	2.5	20
8	A strategy of adopted Co4S3/Co2P2O7 composite grew on carbon paper to enhance the efficient of dye-sensitized solar cells. Solar Energy, 2021, 227, 78-88.	2.9	14
9	Polyvinyl alcohol-assisted synthesis of porous MoO2/C microrods as anodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 857, 113751.	1.9	19
10	In situ synthesis of cobalt triphosphate on carbon paper for efficient electrocatalyst in dye-sensitized solar cell. Solar Energy, 2020, 208, 289-295.	2.9	17
11	Novel benzo[1,2-b:4,5-b']difuran-based copolymer enables efficient polymer solar cells with small energy loss and high VOC. Nano Energy, 2020, 76, 104964.	8.2	51
12	Synthesis of a novel MoIn2S4 alloy film as efficient electrocatalyst for dye-sensitized solar cell. Solar Energy, 2020, 201, 116-121.	2.9	15
13	Synthesis of MoIn2S4@CNTs Composite Counter Electrode for Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2020, 15, 179.	3.1	19
14	Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS2/MWCNT and PANI/MWCNT Composite Electrodes. Nanoscale Research Letters, 2019, 14, 66.	3.1	28
15	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4â€c]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
16	A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy, 2019, 56, 241-251.	8.2	174
17	Enhanced photovoltaic performance of dye-sensitized solar cells based on a promising hybrid counter electrode of CoSe2/MWCNTs. Solar Energy, 2018, 167, 137-146.	2.9	32
18	Improvement in the photoelectric conversion efficiency for the flexible fibrous dye-sensitized solar cells. Nanoscale Research Letters, 2018, 13, 188.	3.1	8

#	Article	IF	CITATIONS
19	High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites. Journal of Materials Chemistry A, 2018, 6, 16439-16449.	5.2	73
20	Bi5FeTi3O15 nanofibers/graphene nanocomposites as an effective counter electrode for dye-sensitized solar cells. Nanoscale Research Letters, 2017, 12, 18.	3.1	19
21	A promising vanadium sulfide counter electrode for efficient dye-sensitized solar cells. RSC Advances, 2017, 7, 12474-12478.	1.7	38
22	A promising hybrid counter electrode of vanadium sulfide decorated with carbon nanotubes for efficient dye-sensitized solar cells. Materials Today Energy, 2017, 4, 58-65.	2.5	21
23	A dual function of high efficiency quasi-solid-state flexible dye-sensitized solar cell based on conductive polymer integrated into poly (acrylic acid-co-carbon nanotubes) gel electrolyte. Solar Energy, 2017, 148, 63-69.	2.9	35
24	Heteroepitaxial growth of Cu2O films on Nb-SrTiO3 substrates and their photovoltaic properties. Ceramics International, 2017, 43, 16232-16237.	2.3	9
25	Photovoltaic enhancement by Au surface-plasmon effect for La doped BiFeO ₃ films. Journal of Materials Chemistry C, 2017, 5, 10615-10623.	2.7	41
26	Polarization dependent ferroelectric photovoltaic effects in BFTO/CuO thin films. Applied Physics Letters, 2017, 111, .	1.5	27
27	Efficient dye-sensitized solar cells incorporating hybrid counter electrode of CuMnSnS 4 microsperes/carbon nanotubes. Solar Energy, 2017, 158, 952-959.	2.9	16
28	Nickel sulfide counter electrode modified with polypyrrole nanoparticles to enhance catalytic ability for flexible dye-sensitized solar cells. RSC Advances, 2016, 6, 61278-61283.	1.7	9
29	Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2016, 11, 239.	3.1	22
30	Nanocomposites of Bi 5 FeTi 3 O 15 with MoS 2 as novel Pt-free counter electrode in dye-sensitized solar cells. Ceramics International, 2016, 42, 12888-12893.	2.3	31
31	An efficient dye-sensitized solar cell with a promising material of Bi 4 Ti 3 O 12 nanofibers/graphene. Electrochimica Acta, 2016, 215, 543-549.	2.6	29
32	PEDOT:PSS assisted preparation of a graphene/nickel cobalt oxide hybrid counter electrode to serve in efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 100159-100168.	1.7	15
33	Cadmium selenide quantum dots solar cells featuring nickel sulfide/polyaniline as efficient counter electrode provide 4.15% efficiency. RSC Advances, 2015, 5, 42101-42108.	1.7	12
34	A strategy to enhance overall efficiency for dye-sensitized solar cells with a transparent electrode of nickel sulfide decorated with poly(3,4-ethylenedioxythiophene). RSC Advances, 2015, 5, 43639-43647.	1.7	17
35	A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale Research Letters, 2015, 10, 1	3.1	959
36	Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode. Nanoscale Research Letters, 2015, 10, 1015.	3.1	11

#	Article	IF	CITATIONS
37	Preparation of PAA- <i>g</i> -PEG/PANI polymer gel electrolyte and its application in quasi solid state dye-sensitized solar cells. Polymer Engineering and Science, 2015, 55, 322-326.	1.5	18
38	Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Research Letters, 2014, 9, 579.	3.1	32
39	Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Advances, 2014, 4, 64068-64074.	1.7	18
40	Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode. Electrochimica Acta, 2014, 129, 229-236.	2.6	34
41	Interpenetrated Inorganic Hybrids for Efficiency Enhancement of PbS Quantum Dot Solar Cells. Advanced Energy Materials, 2014, 4, 1400512.	10.2	29
42	PEDOT:PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells. Electrochimica Acta, 2014, 142, 68-75.	2.6	30
43	Enhanced Performance of Flexible Dye-Sensitized Solar Cell based on Nickel Sulfide/Polyaniline/Titanium Counter Electrode. Electrochimica Acta, 2014, 149, 117-125.	2.6	33
44	Enhanced performance of dye-sensitized solar cells based on an electrodeposited-poly(3,4-ethylenedioxythiophene)/platinum composite counter electrode. Synthetic Metals, 2014, 197, 204-209.	2.1	1
45	Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells. Energy, 2014, 67, 460-467.	4.5	73
46	A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Nanoscale Research Letters, 2014, 9, 240.	3.1	9
47	Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode. Scientific Reports, 2014, 4, 4028.	1.6	141
48	An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Scientific Reports, 2013, 3, 1283.	1.6	59
49	Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy, 2013, 54, 315-321.	4.5	94
50	A dye-sensitized solar cell based on PEDOT:PSS counter electrode. Science Bulletin, 2013, 58, 559-566.	1.7	36
51	A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13885.	5.2	89
52	Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. Journal of Power Sources, 2013, 233, 320-325.	4.0	83
53	Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells. Electrochimica Acta, 2013, 112, 655-662.	2.6	46
54	High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1495-1501.	5.2	185

#	Article	IF	CITATIONS
55	A dual function of high performance counter-electrode for stable quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2013, 241, 373-378.	4.0	35
56	Quantum dot-sensitized solar cells employing Pt/C60 counter electrode provide an efficiency exceeding 2%. Science China Chemistry, 2013, 56, 93-100.	4.2	5
57	Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. Journal of Materials Science, 2013, 48, 3528-3534.	1.7	8
58	A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon, 2013, 55, 1-9.	5.4	131
59	Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 1289-1295.	5.2	95
60	Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2013, 92, 64-70.	2.6	79
61	A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochimica Acta, 2012, 85, 162-168.	2.6	152
62	Application of Poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18057-18063.	1.5	108
63	Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 19919.	6.7	189
64	Preparation of a three-dimensional interpenetrating network of TiO2 nanowires for large-area flexible dye-sensitized solar cells. RSC Advances, 2012, 2, 10550.	1.7	17
65	Glucose Aided Preparation of Tungsten Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6530-6536.	4.0	94
66	Template-free synthesis of a hierarchical flower-like platinum counter electrode and its application in dye-sensitized solar cells. RSC Advances, 2012, 2, 5034.	1.7	22
67	Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells. Science Bulletin, 2012, 57, 2329-2334.	1.7	10
68	Low cost poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2012, 67, 113-118.	2.6	58
69	The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells. Journal of Power Sources, 2012, 208, 197-202.	4.0	31
70	A Largeâ€Area Lightâ€Weight Dyeâ€5ensitized Solar Cell based on All Titanium Substrates with an Efficiency of 6.69% Outdoors. Advanced Materials, 2012, 24, 1884-1888.	11.1	146
71	Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 369-377.	0.2	4
72	Flexible solar cells based on PCBM/P3HT heterojunction. Frontiers of Optoelectronics in China, 2011, 4, 108-113.	0.2	6

#	Article	IF	CITATIONS
73	Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Science Bulletin, 2011, 56, 325-330.	1.7	38
74	Application of upconversion luminescence in dye-sensitized solar cells. Science Bulletin, 2011, 56, 96-101.	1.7	36
75	The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 4573-4578.	2.6	52