
Wenping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086184/publications.pdf Version: 2024-02-01

WENDINGLI

#	Article	IF	CITATIONS
1	Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 4385-4395.	8.0	117
2	PVP–Pd@ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1,4-butynediol. Catalysis Science and Technology, 2014, 4, 329-332.	4.1	63
3	Carbon Nanotubes Supported Mono- and Bimetallic Pt and Ru Catalysts for Selective Hydrogenation of Phenylacetylene. Industrial & Engineering Chemistry Research, 2012, 51, 4934-4941.	3.7	60
4	Transfer Hydrogenation of Biomass-Derived Furfural to 2-Methylfuran over CuZnAl Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 6298-6308.	3.7	60
5	Silicon–nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation. Catalysis Science and Technology, 2014, 4, 53-61.	4.1	54
6	Quantitative Studies on the Oxygen and Nitrogen Functionalization of Carbon Nanotubes Performed in the Gas Phase. Journal of Physical Chemistry C, 2012, 116, 20930-20936.	3.1	52
7	Hydrogenation of succinic acid over supported rhenium catalysts prepared by the microwave-assisted thermolytic method. Catalysis Science and Technology, 2015, 5, 2441-2448.	4.1	42
8	Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity. RSC Advances, 2017, 7, 1626-1633.	3.6	41
9	Hydrodeoxygenation of Dibenzofuran Over SBA-15 Supported Pt, Pd, and Ru Catalysts. Catalysis Letters, 2014, 144, 809-816.	2.6	39
10	Hydrodeoxygenation of dibenzofuran over SiO ₂ , Al ₂ O ₃ /SiO ₂ and ZrO ₂ /SiO ₂ supported Pt catalysts. Catalysis Science and Technology, 2015, 5, 465-474.	4.1	38
11	A Facile and Controlled Route to Prepare an Eggshell Pd Catalyst for Selective Hydrogenation of Phenylacetylene. ChemCatChem, 2010, 2, 1555-1558.	3.7	32
12	Influence of Re–M interactions in Re–M/C bimetallic catalysts prepared by a microwave-assisted thermolytic method on aqueous-phase hydrogenation of succinic acid. Catalysis Science and Technology, 2017, 7, 5212-5223.	4.1	31
13	Synthesis and Characterization of Iron-Substituted ZSM-23 Zeolite Catalysts with Highly Selective Hydroisomerization of <i>n</i> -Hexadecane. Industrial & Engineering Chemistry Research, 2018, 57, 13721-13730.	3.7	31
14	Hydrodeoxygenation of Lignin–derived Diaryl Ethers to Aromatics and Alkanes Using Nickel on Zr–doped Niobium Phosphate. ChemistrySelect, 2016, 1, 4949-4956.	1.5	30
15	Nâ€Doped Carbon Nanotubes Encapsulating Ni/MoN Heterostructures Grown on Carbon Cloth for Overall Water Splitting. ChemElectroChem, 2020, 7, 745-752.	3.4	30
16	Pd@MIL-101 as an efficient bifunctional catalyst for hydrodeoxygenation of anisole. RSC Advances, 2016, 6, 85659-85665.	3.6	28
17	Hydrogenolysis of glycerol over HY zeolite supported Ru catalysts. Journal of Energy Chemistry, 2014, 23, 185-192.	12.9	27
18	Hierarchical ZSM-48-Supported Nickel Catalysts with Enhanced Hydroisomerization Performance of Hexadecane. Industrial & Engineering Chemistry Research, 2019, 58, 19855-19861.	3.7	27

Wenping Li

#	Article	IF	CITATIONS
19	Hydroisomerization of hexadecane over platinum supported on EU-1/ZSM-48 intergrowth zeolite catalysts. Catalysis Science and Technology, 2016, 6, 8016-8023.	4.1	25
20	Catalytic combustion of methane over Pd/Ce–Zr oxides washcoated monolithic catalysts under oxygen lean conditions. RSC Advances, 2015, 5, 102147-102156.	3.6	22
21	Goldâ€Palladiumâ€Alloyâ€Catalyst Loaded UiOâ€66â€NH ₂ for Reductive Amination with Nitroarene Exhibiting High Selectivity. ChemistrySelect, 2018, 3, 5092-5097.	^S 1.5	22
22	W ₂ C nanorods with various amounts of vacancy defects: determination of catalytic active sites in the hydrodeoxygenation of benzofuran. Catalysis Science and Technology, 2017, 7, 1333-1341.	4.1	20
23	Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion. Environmental Science and Pollution Research, 2018, 25, 5643-5654.	5.3	20
24	Catalytic Combustion of Methane over Pt–Ce Oxides under Scarce Oxygen Condition. Industrial & Engineering Chemistry Research, 2016, 55, 2293-2301.	3.7	19
25	Overcoming Limitations in the Strong Interaction between Pt and Irreducible SiO ₂ Enables Efficient and Selective Hydrogenation of Anthracene. ACS Applied Materials & Interfaces, 2022, 14, 590-602.	8.0	18
26	Cobalt Silicides Nanoparticles Embedded in Nâ€Đoped Carbon as Highly Efficient Catalyst in Selective Hydrogenation of Cinnamaldehyde. ChemistrySelect, 2018, 3, 1658-1666.	1.5	17
27	Promotional effects of magnesia on catalytic performance of Pt/SiO2 in hydrogenolysis of dibenzofuran. Journal of Catalysis, 2019, 371, 346-356.	6.2	17
28	Insights into the reaction pathway of hydrodeoxygenation of dibenzofuran over MgO supported noble-metals catalysts. Catalysis Today, 2019, 319, 155-163.	4.4	16
29	Supported Co–Re Bimetallic Catalysts with Different Structures as Efficient Catalysts for Hydrogenation of Citral. ChemSusChem, 2019, 12, 807-823.	6.8	16
30	The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran. Catalysis Science and Technology, 2020, 10, 2948-2960.	4.1	15
31	Hydrogenation of Dicyclopentadiene Resin and Its Monomer over High Efficient CuNi Alloy Catalysts. ChemistrySelect, 2019, 4, 6035-6042.	1.5	13
32	Construction of Cu-M-O <i>_x</i> (M = Zn or Al) Interface in Cu Catalysts for Hydrogenation Rearrangement of Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 16939-16950.	3.7	12
33	Selective Hydrogenation of Dimethyl Terephthalate to 1,4-Cyclohexane Dicarboxylate by Highly Dispersed Bimetallic Ru–Re/AC Catalysts. Journal of Nanoscience and Nanotechnology, 2020, 20, 1140-1147.	0.9	11
34	Engineering the structural formula of N-doped molybdenum carbide nanowires for the deoxygenation of palmitic acid. Sustainable Energy and Fuels, 2020, 4, 2370-2379.	4.9	10
35	Selective Hydrogenolysis of Dibenzofuran over Highly Efficient Pt/MgO Catalysts to <i>o</i> -Phenylphenol. Organic Process Research and Development, 2018, 22, 67-76.	2.7	9
36	Microwave-assisted polyol preparation of reduced graphene oxide nanoribbons supported platinum as a highly active electrocatalyst for oxygen reduction reaction. Journal of Applied Electrochemistry, 2018, 48, 1069-1080.	2.9	9

Wenping Li

#	Article	IF	CITATIONS
37	Deactivation and Regeneration Study of a Co-Promoted MoO ₃ Catalyst in Hydrogenolysis of Dibenzofuran. Industrial & Engineering Chemistry Research, 2020, 59, 4313-4321.	3.7	8
38	Effect of Extra-Framework Fe Species in Pt/Fe/ZSM-23 Catalysts on Hydroisomerization Performance of <i>n</i> -Hexadecane. Industrial & Engineering Chemistry Research, 2022, 61, 279-286.	3.7	7
39	Glycerol hydrogenolysis over ruthenium supported on lanthanum modified ZrO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 101-115.	1.7	6
40	Hollow PtNi Nanochains as Highly Efficient and Stable Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2019, 4, 963-971.	1.5	6
41	Hollow PtCo Nanowires with Rough Surfaces as Highly Active Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect, 2021, 6, 5399-5405.	1.5	6
42	CVD of Pt(C ₅ H ₉) ₂ to Synthesize Highly Dispersed Pt/SBAâ€15 Catalysts for Hydrogenation of Chloronitrobenzene. Chemical Vapor Deposition, 2014, 20, 146-151.	1.3	5
43	Chemical Precipitation Method for the Synthesis of Nb ₂ O ₅ Modified Bulk Nickel Catalysts with High Specific Surface Area. Journal of Visualized Experiments, 2018, , .	0.3	5
44	Lowâ€energy Hemiacetal Dehydrogenation Pathway: Coâ€production of Gluconic Acid and Green Hydrogen via Glucose Dehydrogenation. Chemistry - an Asian Journal, 2022, 17, .	3.3	5
45	Template-Preparation of Hollow PtNi Nanostrings as a Bifunctional Electrocatalyst for the Hydrogen Evolution and Oxygen Reduction Reactions. Journal of Nanoscience and Nanotechnology, 2020, 20, 1215-1223.	0.9	4
46	Tuning the Acidity of Pt/ CNTs Catalysts for Hydrodeoxygenation of Diphenyl Ether. Journal of Visualized Experiments, 2019, , .	0.3	0
47	Supported Co–Re Bimetallic Catalysts with Different Structures as Efficient Catalysts for Hydrogenation of Citral. ChemSusChem, 2019, 12, 723-723.	6.8	Ο