Peter A Van Aken

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8086147/peter-a-van-aken-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,116 64 402 119 h-index g-index citations papers 6.84 6.5 424 17,571 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
402	Engineering ordered arrangements of oxygen vacancies at the surface of superconducting La2CuO4 thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2022 , 40, 013214	2.9	1
401	Ruddlesden B opper Faults in NdNiO3 Thin Films. <i>Symmetry</i> , 2022 , 14, 464	2.7	0
400	Towards Recycling of LLZO Solid Electrolyte Exemplarily Performed on LFP/LLZO/LTO Cells <i>ChemistryOpen</i> , 2022 , e202100274	2.3	1
399	Emergent multiferroism with magnetodielectric coupling in EuTiO created by a negative pressure control of strong spin-phonon coupling <i>Nature Communications</i> , 2022 , 13, 2364	17.4	3
398	Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates. <i>Science Advances</i> , 2021 , 7, eabl8091	14.3	9
397	Determination of Grain-Boundary Structure and Electrostatic Characteristics in a SrTiO Bicrystal by Four-Dimensional Electron Microscopy. <i>Nano Letters</i> , 2021 , 21, 9138-9145	11.5	О
396	Metal-Organic Framework-Derived Nanoconfinements of CoF and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. <i>ACS Nano</i> , 2021 , 15, 1509-1518	16.7	22
395	Control of the metal-insulator transition in NdNiO3 thin films through the interplay between structural and electronic properties. <i>Physical Review Materials</i> , 2021 , 5,	3.2	1
394	Optoelectronic Inactivity of Dislocations in Cu(In,Ga)Se2 Thin Films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100042	2.5	1
393	Oxygen-evolving catalytic atoms on metal carbides. <i>Nature Materials</i> , 2021 , 20, 1240-1247	27	58
392	Optical conductivity and superconductivity in highly overdoped La Ca CuO thin films. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
391	Interplay between structural and electronic properties with the metal-insulator transition in NdNiO3 thin films. <i>Microscopy and Microanalysis</i> , 2021 , 27, 144-145	0.5	
390	An optimized TEM specimen preparation method of quantum nanostructures. <i>Micron</i> , 2021 , 140, 10297	'9 2.3	6
389	2D Doping of Proton Conductors: BaZrO3-Based Heterostructures. <i>Advanced Energy Materials</i> , 2021 , 11, 2003267	21.8	4
388	Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3. <i>Communications Materials</i> , 2021 , 2,	6	7
387	How sharp are atomically sharp high-Tc La2CuO4 interfaces?. <i>Microscopy and Microanalysis</i> , 2021 , 27, 700-701	0.5	
386	Facile Preparation of MoS Nanocomposites for Efficient Potassium-Ion Batteries by Grinding-Promoted Intercalation Exfoliation. <i>Small</i> , 2021 , 17, e2102263	11	10

(2020-2021)

385	Improved uniformity and threshold voltage in NbOx-ZrO2 selectors. <i>Applied Physics Letters</i> , 2021 , 119, 073503	3.4	О
384	Grain boundary blocking effects in Sm/Yb-doped AlN ceramics. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 4870-4875	6	3
383	Orbital engineering in YVO3IIaAlO3 superlattices. <i>Physical Review B</i> , 2021 , 104,	3.3	1
382	Ion transport in nanocrystalline CaF2 films. Journal of Applied Physics, 2021, 130, 105301	2.5	
381	Atomic-Scale Tuning of the Charge Distribution by Strain Engineering in Oxide Heterostructures. <i>ACS Nano</i> , 2021 , 15, 16228-16235	16.7	1
380	Negatively Charged In-Plane and Out-Of-Plane Domain Walls with Oxygen-Vacancy Agglomerations in a Ca-Doped Bismuth-Ferrite Thin Film. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 4498-4508	4	1
379	Coexisting commensurate and incommensurate charge ordered phases in CoO. <i>Scientific Reports</i> , 2021 , 11, 19415	4.9	
378	The Mechanical Consequences of the Interplay of Mineral Distribution and Organic Matrix Orientation in the Claws of the Sea Slater Ligia pallasii. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 1373	2.4	1
377	Atomic-scale Identification of High-temperature Superconductivity at La2CuO4 Interfaces. <i>Microscopy and Microanalysis</i> , 2020 , 26, 738-739	0.5	
376	Atomic-scale Considerations on LaNiO3-La2CuO4 Heterostructures: InterfaceEhermoelectricity Relationship. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2626-2627	0.5	
375	Analysis of Mineralized Matrices in Calcium Bodies with and Without Bacteria in Two Species of Terrestrial Crustaceans. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2746-2747	0.5	
374	Secondary-Phase-Assisted Grain Boundary Migration in CuInSe_{2}. <i>Physical Review Letters</i> , 2020 , 124, 095702	7.4	2
373	Tuning the resistive switching in tantalum oxide-based memristors by annealing. <i>AIP Advances</i> , 2020 , 10, 065112	1.5	2
372	Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO-TiO Microswimmers. <i>ACS Applied Materials & Materials </i>	9.5	20
371	Toroidal Moments Probed by Electron Beams. <i>Journal of Physics: Conference Series</i> , 2020 , 1461, 012174	0.3	1
370	Inhomogeneous ferromagnetism mimics signatures of the topological Hall effect in SrRuO3 films. <i>Physical Review Materials</i> , 2020 , 4,	3.2	11
369	Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20190599	3	1
368	A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy. <i>Semiconductor Science and Technology</i> , 2020 , 36, 025011	1.8	2

367	Metalörganic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. <i>Journal of Power Sources</i> , 2020 , 448, 227403	8.9	40
366	Direct Observation of Huge Flexoelectric Polarization around Crack Tips. <i>Nano Letters</i> , 2020 , 20, 88-94	11.5	14
365	Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor. <i>Frontiers in Chemistry</i> , 2020 , 8, 663	5	14
364	High-resolution Analytical STEM of Defects and Interfaces in Beam-sensitive Ultra-thin Cuprate Films. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2972-2973	0.5	
363	Probing Charge Accumulation at SrMnO/SrTiO Heterointerfaces via Advanced Electron Microscopy and Spectroscopy. <i>ACS Nano</i> , 2020 , 14, 12697-12707	16.7	4
362	Strain-induced structural transition in DyBa2Cu3O7\(\text{If films grown by atomic layer-by-layer molecular beam epitaxy. } Applied Physics Letters, 2020 , 117, 072601	3.4	3
361	Design of Complex Oxide Interfaces by Oxide Molecular Beam Epitaxy. <i>Journal of Superconductivity and Novel Magnetism</i> , 2020 , 33, 107-120	1.5	16
360	Substrate-Selective Morphology of Cesium Iodide Clusters on Graphene. ACS Nano, 2020, 14, 4626-463.	516.7	9
359	3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery. <i>Advanced Materials</i> , 2019 , 31, e1905146	24	43
358	Combined imaging and analytical STEM of ultra-thin cuprate films. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1750-1751	0.5	2
357	Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. <i>ACS Photonics</i> , 2019 , 6, 2509-2516	6.3	4
356	Prospect for detecting magnetism of a single impurity atom using electron magnetic chiral dichroism. <i>Physical Review B</i> , 2019 , 100,	3.3	4
355	Radiation of Dynamic Toroidal Moments. ACS Photonics, 2019, 6, 467-474	6.3	17
354	Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 444-481	4.2	29
353	High-temperature-grown buffer layer boosts electron mobility in epitaxial La-doped BaSnO3/SrZrO3 heterostructures. <i>APL Materials</i> , 2019 , 7, 041119	5.7	10
352	Boosting Sodium Storage in TiF3/Carbon Core/Sheath Nanofibers through an Efficient Mixed-Conducting Network. <i>Advanced Energy Materials</i> , 2019 , 9, 1901470	21.8	13
351	Natural Vermiculite Enables High-Performance in LithiumBulfur Batteries via Electrical Double Layer Effects. <i>Advanced Functional Materials</i> , 2019 , 29, 1902820	15.6	27
350	Silver nanowires with optimized silica coating as versatile plasmonic resonators. <i>Scientific Reports</i> , 2019 , 9, 3859	4.9	16

(2018-2019)

3	349	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium-Storage Performance. <i>Angewandte Chemie</i> , 2019 , 131, 7316-7321	3.6	8
3	348	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium-Storage Performance. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7238-7243	16.4	57
3	347	Merging transformation optics with electron-driven photon sources. <i>Nature Communications</i> , 2019 , 10, 599	17.4	18
3	346	Improved sample preparation of beam-sensitive ultra-thin cuprate films. <i>Microscopy and Microanalysis</i> , 2019 , 25, 686-687	0.5	2
3	345	Orientation of Organic Fibers and the Presence of Amorphous Calcium Phosphate in Elongated Crustacean Skeletal Elements. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1106-1107	0.5	
3	344	Metal Fluoridellithium Batteries: 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoridellithium Battery (Adv. Mater. 43/2019). <i>Advanced Materials</i> , 2019 , 31, 1970304	24	1
3	343	Spin-entropy induced thermopower and spin-blockade effect in CoO. <i>Physical Review B</i> , 2019 , 100,	3.3	4
3	342	TEM Sample Preparation of Patterned Quantum Dots. <i>Microscopy and Microanalysis</i> , 2019 , 25, 790-791	0.5	
3	341	Initial nucleation of amorphous Si BIII ceramics derived from polymer-precursors. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2851-2858	9.1	
3	340	Tunable perpendicular exchange bias in oxide heterostructures. <i>Physical Review Materials</i> , 2019 , 3,	3.2	10
3	339	Electronic and vibrational signatures of ruthenium vacancies in Sr2RuO4 thin films. <i>Physical Review Materials</i> , 2019 , 3,	3.2	6
3	338	TEM and HAADF STEM Imaging of Dislocation Loops in Irradiated GaAs. <i>Acta Physica Polonica A</i> , 2019 , 136, 245-249	0.6	2
3	337	Magnetic Properties of Epitaxially Grown SrRuO Nanodots. <i>Nano Letters</i> , 2019 , 19, 1131-1135	11.5	7
3	336	Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond. <i>Nature Materials</i> , 2018 , 17, 243-248	27	12
3	335	Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. <i>Nanoscale</i> , 2018 , 10, 4952-4961	7.7	16
3	334	Structure and chemistry of interfaces between ceria and yttria-stabilized zirconia studied by analytical STEM. <i>Ultramicroscopy</i> , 2018 , 188, 90-100	3.1	3
3	333	Long-Range Coupling of Toroidal Moments for the Visible. ACS Photonics, 2018, 5, 1326-1333	6.3	10
3	332	A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection. <i>Advanced Materials</i> , 2018 , 30, e1706643	24	85

331	Fuel-Free Nanocap-Like Motors Actuated Under Visible Light. <i>Advanced Functional Materials</i> , 2018 , 28, 1705862	15.6	40
330	Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2018 , 384, 318	-327	25
329	Tailoring the electronic properties of Ca2RuO4 via epitaxial strain. <i>Applied Physics Letters</i> , 2018 , 112, 031902	3.4	16
328	High-temperature superconductivity at the lanthanum cuprate/lanthanum-strontium nickelate interface. <i>Nanoscale</i> , 2018 , 10, 8712-8720	7.7	11
327	Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy. <i>Ultramicroscopy</i> , 2018 , 184, 98-105	3.1	13
326	Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. <i>Nanophotonics</i> , 2018 , 7, 93-110	6.3	64
325	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. <i>Energy Storage Materials</i> , 2018 , 10, 122-129	19.4	36
324	EDGE 2017 - Enhanced Data Generated by Electrons, Okinawa, May 2017. <i>Microscopy (Oxford, England)</i> , 2018 , 67, i1-i2	1.3	1
323	High-Temperature Thermoelectricity in LaNiO-LaCuO Heterostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 22786-22792	9.5	9
322	Complex magnetic order in nickelate slabs. <i>Nature Physics</i> , 2018 , 14, 1097-1102	16.2	23
321	Cross-Linking Hollow Carbon Sheet Encapsulated CuP Nanocomposites for High Energy Density Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 7018-7027	16.7	86
320	Elucidating the Mechanism of an RbF Post Deposition Treatment in CIGS Thin Film Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1800156	7.1	51
319	Exfoliation of a non-van der Waals material from iron ore hematite. <i>Nature Nanotechnology</i> , 2018 , 13, 602-609	28.7	179
318	Probing Jahn-Teller Distortions at Superconducting La2CuO4 Interfaces. <i>Microscopy and Microanalysis</i> , 2018 , 24, 78-79	0.5	1
317	STEM SI Warp: A Tool for Correcting the Linear and Nonlinear Distortions for Atomically Resolved STEM Spectrum and Diffraction Imaging. <i>Microscopy and Microanalysis</i> , 2018 , 24, 132-133	0.5	7
316	Analytical STEM of Amorphous and Crystalline Mineral Phases in Calcium Bodies of Terrestrial Crustaceans. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1344-1345	0.5	
315	Structural optimization and amorphous calcium phosphate mineralization in sensory setae of a terrestrial crustacean (Isopoda: Oniscidea). <i>Micron</i> , 2018 , 112, 26-34	2.3	5
314	Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure. <i>Physical Review Materials</i> , 2018 , 2,	3.2	17

(2017-2018)

313	Strain-induced indium clustering in non-polar a-plane InGaN quantum wells. <i>Acta Materialia</i> , 2018 , 145, 109-122	8.4	5
312	Compositional and engineering adaptations in dentine explored by analytical STEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1274-1275	0.5	1
311	Direct Visualization and Image Simulations of Oxygen Sublattice Occupancy in Thin Cuprate Films. <i>Microscopy and Microanalysis</i> , 2018 , 24, 76-77	0.5	2
310	Bio-templated Multilayered Organic-Inorganic Composites Investigated by Analytical STEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1326-1327	0.5	
309	Atomically Resolved EELS Elemental and Fine Structure Mapping via Multi-Frame and Energy-Offset Correction Acquisition. <i>Microscopy and Microanalysis</i> , 2018 , 24, 448-449	0.5	1
308	Ultrathin Ti Nb O Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804378	24	81
307	Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging. <i>Microscopy (Oxford, England)</i> , 2018 , 67, i114-i122	1.3	22
306	Strain and size combined effects on the GaN band structure: VEELS and DFT study. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 5430-5434	3.6	5
305	Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy. <i>Applied Physics Letters</i> , 2017 , 110, 041606	3.4	22
304	Correction to Step-Flow Growth of Bi2Te3 Nanobelts. <i>Crystal Growth and Design</i> , 2017 , 17, 1438-1438	3.5	3
303	Impact of interfacial coupling of oxygen octahedra on ferromagnetic order in LaSrMnO/SrTiO heterostructures. <i>Scientific Reports</i> , 2017 , 7, 40068	4.9	20
302	Effect of Sludge Retention Time on the Efficiency of Excess Sludge Reduction by Ultrasonic Disintegration. <i>Lecture Notes in Civil Engineering</i> , 2017 , 131-137	0.3	
301	Polyphosphate-accumulating bacterial community colonizing the calcium bodies of terrestrial isopod crustaceans Titanethes albus and Hyloniscus riparius. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	1
300	Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-Eand ion-doping ceria heterostructure material for new generation fuel cell. <i>Nano Energy</i> , 2017 , 37, 195-202	17.1	75
299	Peapod-like Li VO /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors. <i>Advanced Materials</i> , 2017 , 29, 1700142	24	207
298	A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. <i>Journal of Cleaner Production</i> , 2017 , 161, 1432-1441	10.3	26
297	A High PowerHigh Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization. <i>Chemistry of Materials</i> , 2017 , 29, 5207-5215	9.6	109
296	Phase constitution, Sr distribution and morphology of self-assembled La-Sr-Co-O composite films prepared by PLD. <i>Solid State Ionics</i> , 2017 , 303, 172-180	3.3	14

295	Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1605650	24	257
294	Quantitative electron tomography of PLA/clay nanocomposites to understand the effect of the clays in the thermal stability. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	5
293	Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors. ACS Nano, 2017, 11, 239-24	18 16.7	11
292	Influence of Substrate Temperature and Dopant Distribution at Two-Dimensionally Doped Superconducting La2CuO4 Interfaces. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1570-1571	0.5	
291	Roughening of a stepped GaN grain boundary with increasing driving force for migration. <i>Europhysics Letters</i> , 2017 , 120, 16002	1.6	4
290	Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties. <i>APL Materials</i> , 2017 , 5, 086110	5.7	2
289	Synthesis of Superconductor-Topological Insulator Hybrid Nanoribbon Structures. <i>Nano</i> , 2017 , 12, 1750	00 <u>9</u> 5	
288	Evidence for Cu2\(\mathbb{Q}\)Se platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films. <i>Applied Physics Letters</i> , 2017 , 111, 032103	3.4	10
287	Point defect segregation and its role in the detrimental nature of Frank partials in Cu(In,Ga)Se2 thin-film absorbers. <i>Physical Review B</i> , 2017 , 95,	3.3	8
286	Interface Effects on the Ion Transport of Epitaxial YZrO Films. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 27257-27265	9.5	11
285	Measuring the Cation and Oxygen Atomic Column Displacement at Picometer Precision. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1612-1613	0.5	
284	Dopant size effects on novel functionalities: High-temperature interfacial superconductivity. <i>Scientific Reports</i> , 2017 , 7, 453	4.9	24
283	High Performance Graphene/Ni P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design. <i>Advanced Materials</i> , 2017 , 29, 1604015	24	193
282	STEM SI Warp: a Digital Micrograph script tool for warping the image distortions of atomically resolved spectrum image. <i>Microscopy and Microanalysis</i> , 2017 , 23, 408-409	0.5	1
281	Magnesium-Supported Continuous Growth of Rodents' Incisors. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1320-1321	0.5	
280	Biomimetic Synthesis of Ceramic Composites. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1390-1391	0.5	
279	Exposing Advanced Building Strategies of Strongly Iron-Enriched Incisors. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1848-1849	0.5	
278	Octahedral Distortions at High-Temperature Superconducting La2CuO4 Interfaces: Visualizing Jahn Teller Effects. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700737	4.6	11

(2016-2017)

277	Interface engineering of Cu(In,Ga)Se2and atomic layer deposited Zn(O,S) heterojunctions. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 08MC16	1.4	2
276	Interaction between Relativistic Electrons and Mesoscopic Plasmonic Tapers. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1534-1535	0.5	
275	Respirometric Evaluation of Toxicity of 2,4-Dichlorophenol Towards Activated Sludge and the Ability of Biomass Acclimation. <i>Lecture Notes in Civil Engineering</i> , 2017 , 60-67	0.3	1
274	Complex Magnetic Order in Nickelate Slabs. <i>Springer Theses</i> , 2017 , 109-144	0.1	
273	Structural and Chemical Investigations of Superconducting Lanthanum Cuprate Bilayer Interfaces 2016 , 956-957		
272	Interplay of organic matrix and amorphous calcium phosphate strengthens the isopod claw 2016 , 199-	-200	
271	Investigation of Plasmonic Modes of Gold Tapers by EELS 2016 , 889-890		
270	Unusually high iron enrichment in hard dental tissues of coypu 2016 , 746-747		
269	Colloidal Rods in Irregular Spatial Confinement 2016 , 43-44		
268	Reflection and Phase Matching in Plasmonic Gold Tapers. <i>Nano Letters</i> , 2016 , 16, 6137-6144	11.5	23
268 267	Reflection and Phase Matching in Plasmonic Gold Tapers. <i>Nano Letters</i> , 2016 , 16, 6137-6144 Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 27368-27375	9.5	23
	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped		
267	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 27368-27375 Preparation and characterization of Sm and Ca co-doped ceria [la0.6Sr0.4Co0.2Fe0.8O3 [lasterion composites for electrolyte-layer-free fuel cells. <i>Journal of Materials Chemistry</i>]	9.5	17
267 266	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & Discontinuous Materials Chemistry A, 2016, 4, 15426-15436</i> A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In	9.5	17 74
267 266 265	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & Discording Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Discording Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Discording Conductor Superation and Caro-doped cerial Discording Conductor Conductor Composites for electrolyte-layer-free fuel cells. <i>Journal of Materials Chemistry A</i>, 2016, 4, 15426-15436 A Lamellar Hybrid Assembled from Metal Discording Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. <i>Advanced Materials</i>, 2016, 28, 7774-82 Sample tilt effects on atom column position determination in ABF-STEM imaging. <i>Ultramicroscopy</i>,</i>	9.5	17 74 122
267 266 265 264	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & Discording Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Discording Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Discording Theorems (2016, 8, 27368-27375).</i> Preparation and characterization of Sm and Ca co-doped cerialla0.6Sr0.4Co0.2Fe0.8O3E semiconductoribnic composites for electrolyte-layer-free fuel cells. <i>Journal of Materials Chemistry A</i> , 2016, 4, 15426-15436 A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. <i>Advanced Materials</i> , 2016, 28, 7774-82 Sample tilt effects on atom column position determination in ABF-STEM imaging. <i>Ultramicroscopy</i> , 2016, 160, 110-117 Phage-assisted assembly of organicihorganic hybrid bilayers. <i>International Journal of Materials</i>	9.5 13 24 3.1	17 74 122 40
267 266 265 264 263	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. <i>ACS Applied Materials & Discontinuous Composition of Sm and Ca co-doped cerial</i> (20.65r0.4Co0.2Fe0.8O3E) semiconductoribnic composites for electrolyte-layer-free fuel cells. <i>Journal of Materials Chemistry A</i> , 2016, 4, 15426-15436 A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. <i>Advanced Materials</i> , 2016, 28, 7774-82 Sample tilt effects on atom column position determination in ABF-STEM imaging. <i>Ultramicroscopy</i> , 2016, 160, 110-117 Phage-assisted assembly of organicinorganic hybrid bilayers. <i>International Journal of Materials Research</i> , 2016, 107, 295-299 Formation of Pt-Zn Alloy Nanoparticles by Electron-Beam Irradiation of Wurtzite ZnO in the TEM.	9.5 13 24 3.1	17 74 122 40 3

259	Electron-Beam-Induced Antiphase Boundary Reconstructions in ZrO2- La2/3Sr1/3MnO3 Pillar-Matrix Structures. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1824-1825	0.5	
258	Magnetic and magnetotransport properties of ultrathin La\${}_{0.7}\$Ba\${}_{0.3}\$MnO3epitaxial films embedded in SrRuO3. <i>New Journal of Physics</i> , 2016 , 18, 053021	2.9	7
257	Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube@raphene Hybrid Architectures for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 1112-1119	15.6	246
256	Oxygen octahedra picker: A software tool to extract quantitative information from STEM images. <i>Ultramicroscopy</i> , 2016 , 168, 46-52	3.1	44
255	Long-range charge-density-wave proximity effect at cuprate/manganate interfaces. <i>Nature Materials</i> , 2016 , 15, 831-4	27	28
254	Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi2Se3 Probed by Electron Beams. <i>ACS Nano</i> , 2016 , 10, 6988-94	16.7	37
253	Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography. <i>Ultramicroscopy</i> , 2016 , 165, 8-14	3.1	6
252	High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network. <i>Advanced Materials</i> , 2016 , 28, 2409-16	24	182
251	Controlled self-assembly of biomolecular rods on structured substrates. <i>Soft Matter</i> , 2016 , 12, 3177-83	3.6	3
250	Stability of M13 Phage in Organic Solvents. <i>Journal of Biomaterials and Nanobiotechnology</i> , 2016 , 07, 72-77	1	7
249	Elemental redistributions at structural defects in Cu(In,Ga)Se2 thin films for solar cells. <i>Journal of Applied Physics</i> , 2016 , 120, 205301	2.5	12
248	Oxygen Octahedral Picker: A Digital Micrograph Script Tool for Extracting Quantitative Information From HAADF and ABF Images. <i>Microscopy and Microanalysis</i> , 2016 , 22, 930-931	0.5	
247	Plasmons in Mesoscopic Gold Tapers. <i>Microscopy and Microanalysis</i> , 2016 , 22, 294-295	0.5	
246	Structural Anisotropy in a Crustacean Claw Calcified with Amorphous Calcium Phosphate. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1868-1869	0.5	
245	Analytical STEM Study of Dy-doped Bi2Te3 Thin Films 2016 , 1050-1051		
244	Hyperbolic Plasmons in the Topological Insulator Bi2Se3 2016 , 1168-1169		
243	Precision and application of atom location in HAADF and ABF 2016 , 507-508		
242	Atomic-scale investigation of interface phenomena in two-dimensionally Sr-doped La2CuO4 and La2CuO4/ La2-xSrxNiO4 superlattices 2016 , 801-802		

(2015-2016)

241	Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes. <i>Advanced Materials</i> , 2016 , 28, 7276-83	24	212
240	A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7302-7308	7.1	130
239	MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage. <i>Small</i> , 2016 , 12, 2354-64	11	274
238	Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells a review. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 363-375	2.5	42
237	Linking Dopant Distribution and Interatomic Distortions at La 1.6 Mo.4CuO 4 /La2CuO4 Superconducting Interfaces. <i>Microscopy and Microanalysis</i> , 2016 , 22, 308-309	0.5	3
236	The Railway Metropolis 2016 , 1-17		2
235	Step-Flow Growth of Bi2Te3 Nanobelts. Crystal Growth and Design, 2016, 16, 6961-6966	3.5	5
234	Advances in Momentum-Resolved Dispersion Investigations via Monochromated Electron Energy-Loss Spectroscopy. <i>Microscopy and Microanalysis</i> , 2016 , 22, 978-979	0.5	
233	High Resolution STEM Study of Dy-doped Bi 2 Te 3 Thin Films. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1516-1517	0.5	
232	Atomic-Scale Quantitative Analysis of Lattice Distortions at Interfaces of Two-Dimensionally Sr-Doped La2CuO4 Superlattices. <i>ACS Applied Materials & Empty Interfaces</i> , 2016 , 8, 6763-9	9.5	14
231	Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 1818-1827	35.4	32
230	Electron-Beam-Induced Antiphase Boundary Reconstructions in a ZrO2-LSMO Pillar-Matrix System. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 1. System. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 2016, 8, 24177-85	9.5	2
229	. IEEE Journal of Photovoltaics, 2016 , 6, 1530-1536	3.7	16
228	Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). <i>Journal of Structural Biology</i> , 2016 , 195, 227-237	3.4	15
227	Excitation of Mesoscopic Plasmonic Tapers by Relativistic Electrons: Phase Matching versus Eigenmode Resonances. <i>ACS Nano</i> , 2015 , 9, 7641-8	16.7	49
226	The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. <i>Chemical Engineering Journal</i> , 2015 , 280, 728-736	14.7	58
225	Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries. <i>ACS Applied Materials & Distriction</i> (2015), 7, 10518-24	9.5	14
224	On the impact of indium distribution on the electronic properties in InGaN nanodisks. <i>Applied Physics Letters</i> , 2015 , 106, 101910	3.4	3

223	Structural and magnetic properties of ferrihydrite nanoparticles. RSC Advances, 2015, 5, 39643-39650	3.7	11
222	Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2015 , 27, 3143-3149	9.6	25
221	Investigating hybridization schemes of coupled split-ring resonators by electron impacts. <i>Optics Express</i> , 2015 , 23, 20721-31	3.3	5
220	High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping. <i>Nature Communications</i> , 2015 , 6, 8586	17.4	44
219	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20487-20493	13	64
218	Uniform yolkEhell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 3531-3538	35.4	350
217	Rapid and up-scalable fabrication of free-standing metal oxide nanosheets for high-performance lithium storage. <i>Small</i> , 2015 , 11, 2011-8	11	44
216	Fast Li Storage in MoS2-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. <i>Advanced Energy Materials</i> , 2015 , 5, 1401170	21.8	142
215	A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries. <i>Advanced Science</i> , 2015 , 2, 1500200	13.6	158
214	Field-Effect Transistors with Submicrometer Gate Lengths Fabricated from LaAlO3BrTiO3-Based Heterostructures. <i>Physical Review Applied</i> , 2015 , 4,	4.3	29
213	Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films. <i>Scientific Reports</i> , 2015 , 5, 15767	4.9	21
212	High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements. <i>Nanoscale Research Letters</i> , 2015 , 10, 1024	5	11
211	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9632-6	16.4	214
210	Linking Atomic Structure and Local Chemistry at Manganese-Segregated Antiphase Boundaries in ZrO2🛮a2/3Sr1/3MnO3 Thin Films. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500377	4.6	12
209	Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. <i>Small</i> , 2015 , 11, 6026-35	11	75
208	Surprising high iron enrichment in hard dental tissues of rodents. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2289-2290	0.5	
207	Real-space Imaging of Plasmonic Modes of Gold Tapers by EFTEM and EELS. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2221-2222	0.5	3
206	Manganese Segregation at Antiphase Boundaries Connecting ZrO2 Pillars in ZrOi-Lai/sSri/sMnOs Pillar-Matrix Structures. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2067-2068	0.5	1

205	Hybrid Calcium Phosphate Neuron-Like Structures under the Microscope. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1539-1540	0.5	
204	Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. <i>ACS Nano</i> , 2015 , 9, 6610-8	16.7	213
203	High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. <i>Advanced Functional Materials</i> , 2015 , 25, 2335-2342	15.6	130
202	STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers. <i>Nanoscale</i> , 2015 , 7, 4935-41	7.7	12
201	In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5259-5265	13	85
200	3D VIDINanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. <i>Nano Letters</i> , 2015 , 15, 1388-94	11.5	160
199	Fabrication And Plasmonic Characterization Of Au Nanowires With Controlled Surface Morphology. <i>Advanced Materials Letters</i> , 2015 , 6, 377-382	2.4	7
198	Inline electron holography and VEELS for the measurement of strain in ternary and quaternary (In,Al,Ga)N alloyed thin films and its effect on bandgap energy. <i>Journal of Microscopy</i> , 2015 , 261, 27-35	1.9	3
197	Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2152-6	16.4	777
196	Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. <i>Nano Letters</i> , 2014 , 14, 2597-603	11.5	365
195	Layer selective control of the lattice structure in oxide superlattices. Advanced Materials, 2014, 26, 258-	624	6
194	Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. <i>Nano Letters</i> , 2014 , 14, 6387-92	11.5	227
193	Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. <i>Nanoscale</i> , 2014 , 6, 1384-9	7.7	481
192	Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application. <i>RSC Advances</i> , 2014 , 4, 36301-36306	3.7	13
191	Quantitative determination of compositional profiles using HAADF image simulations. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2014 , 11, 284-288		1
190	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 5081-6	7.7	235
189	Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. <i>ACS Nano</i> , 2014 , 8, 7051-9	16.7	177
188	Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4. <i>Nano Letters</i> , 2014 , 14, 5342-9	11.5	27

187	Adsorption and self-assembly of M13 phage into directionally organized structures on C and SiO2 films. <i>Langmuir</i> , 2014 , 30, 11428-32	4	19
186	Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. <i>Nano Letters</i> , 2014 , 14, 2175-80	11.5	392
185	Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage. <i>Nanoscale</i> , 2014 , 6, 11411-8	7.7	26
184	Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. <i>Advanced Materials</i> , 2014 , 26, 6025-30	24	192
183	Influence of a Second Cation (M = Ca2+, Mg2+) on the Phase Evolution of (BaxM1☑)F2 Starting from Amorphous Deposits. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 1868-1875	1.3	9
182	On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 116, 947-954	2.6	18
181	Atomic-Scale STEM-EELS Characterization of the Chemistry of Structural Defects and Interfaces in Energy-Related Materials. <i>Microscopy and Microanalysis</i> , 2014 , 20, 562-563	0.5	
180	Plasmons of Hexamer and Pentamer Nanocavities Probed with Swift Electrons. <i>Microscopy and Microanalysis</i> , 2014 , 20, 580-581	0.5	
179	Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity. <i>Scientific Reports</i> , 2014 , 4, 7020	4.9	22
178	Materials News: Interfacial chemistry and atomic arrangement of ZrO2 La2/3Sr1/3MnO3 pillar-matrix structures. <i>APL Materials</i> , 2014 , 2, 127301	5.7	8
177	Hybridization of Off-Axis and In-line High-Resolution Electron Holography. <i>Microscopy and Microanalysis</i> , 2014 , 20, 272-273	0.5	
176	Strain mapping for advanced CMOS technologies. Crystal Research and Technology, 2014, 49, 38-42	1.3	4
175	Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry. <i>APL Materials</i> , 2014 , 2, 032104	5.7	38
174	Mineralogy and defect microstructure of an olivine-dominated Itokawa dust particle: evidence for shock metamorphism, collisional fragmentation, and LL chondrite origin. <i>Earth, Planets and Space</i> , 2014 , 66, 118	2.9	13
173	Influence of TEM specimen preparation on chemical composition of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. <i>Micron</i> , 2014 , 62, 37-42	2.3	8
172	Electrochemical Route to Large-Area Mono-Crystalline Gold Platelets for High-Quality Plasmonic Applications 2014 ,		1
171	An FeF(3) 10.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11425-8	16.4	142
170	Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. <i>Electrochemistry Communications</i> , 2013 , 28, 54-57	5.1	41

169	High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands. <i>Nanoscale Research Letters</i> , 2013 , 8, 337	5	18
168	COD and AOX Removal and Biodegradability Assessment for Fenton and O3/UV Oxidation Processes: A Case Study from a Graphical Industry Wastewater. <i>Ozone: Science and Engineering</i> , 2013 , 35, 16-21	2.4	9
167	Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20813-8	3.6	71
166	Microstructure, chemistry, and electronic structure of natural hybrid composites in abalone shell. <i>Micron</i> , 2013 , 48, 54-64	2.3	16
165	Hydrogen-bond reinforced vanadia nanofiber paper of high stiffness. Advanced Materials, 2013, 25, 246	5 8 <u>2</u> 73	24
164	Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. <i>New Journal of Physics</i> , 2013 , 15, 053013	2.9	32
163	Mineralization of gold nanoparticles using tailored M13 phages. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2013 , 2, 173-185	1.3	12
162	A High-Capacity Cathode for Lithium Batteries Consisting of Porous Microspheres of Highly Amorphized Iron Fluoride Densified from Its Open Parent Phase. <i>Advanced Energy Materials</i> , 2013 , 3, 113-119	21.8	93
161	Nano-Pearl-String TiNb2O7 as Anodes for Rechargeable Lithium Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 49-53	21.8	193
160	Evolution of order in amorphous-to-crystalline phase transformation of MgF2. <i>Journal of Applied Crystallography</i> , 2013 , 46, 1105-1116	3.8	28
159	Plasmon energy from strained GaN quantum wells. <i>Applied Physics Letters</i> , 2013 , 103, 021901	3.4	6
158	Recent TEM developments applied to quantum structures. <i>MATEC Web of Conferences</i> , 2013 , 5, 02001	0.3	
157	Nanosession: High-Resolution Transmission Electron Microscopy 2013 , 133-141		
156	Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. <i>ACS Nano</i> , 2012 , 6, 9711-7	16.7	37
155	The growth of one-dimensional CuPcF16 nanostructures on gold nanoparticles as studied by transmission electron microscopy tomography. <i>ACS Nano</i> , 2012 , 6, 4039-44	16.7	5
154	Bottom-Up Tailoring of Plasmonic Nanopeapods Making Use of the Periodical Topography of Carbon Nanocoil Templates. <i>Advanced Functional Materials</i> , 2012 , 22, 5157-5165	15.6	13
153	Cross-sectional characterization of electrodeposited, monocrystalline Au nanowires in parallel arrangement. <i>Small</i> , 2012 , 8, 3396-9	11	6
152	Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. <i>Nano Letters</i> , 2012 , 12, 5239-44	411.5	122

151	Breaking the mode degeneracy of surface plasmon resonances in a triangular system. <i>Langmuir</i> , 2012 , 28, 8867-73	4	25
150	Linking microstructure and nanochemistry in human dental tissues. <i>Microscopy and Microanalysis</i> , 2012 , 18, 509-23	0.5	24
149	Experimental investigation of smectite interaction with metal iron at 80 °C: Structural characterization of newly formed Fe-rich phyllosilicates. <i>American Mineralogist</i> , 2012 , 97, 864-871	2.9	35
148	Dopant Segregation and Space Charge Effects in Proton-Conducting BaZrO3 Perovskites. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2453-2461	3.8	89
147	Biomineralization of Zinc-Phosphate-Based Nano Needles by Living Microalgae. <i>Journal of Biomaterials and Nanobiotechnology</i> , 2012 , 03, 362-370	1	13
146	Ruddlesden-Popper faults in LaNiO3/LaAlO3 superlattices. <i>Journal of Applied Physics</i> , 2012 , 112, 01350)9 2.5	28
145	Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. <i>Langmuir</i> , 2012 , 28, 1562-8	4	41
144	Phase boundary propagation in large LiFePO4 single crystals on delithiation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2988-92	16.4	78
143	Charge-ordered spinel AlV2O4: High-energy-resolution EELS and computational studies. <i>Physical Review B</i> , 2012 , 85,	3.3	7
142	Hollow carbon nanospheres with a high rate capability for lithium-based batteries. <i>ChemSusChem</i> , 2012 , 5, 400-3	8.3	190
142		8.3	190
	2012 , 5, 400-3	8. ₃	
141	2012, 5, 400-3 Sample Preparation Techniques for Transmission Electron Microscopy 2012, 473-498 Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. <i>Physical Review B</i> , 2011,		4
141	Sample Preparation Techniques for Transmission Electron Microscopy 2012, 473-498 Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. <i>Physical Review B</i> , 2011, 83,	3.3	74
141 140 139	Sample Preparation Techniques for Transmission Electron Microscopy 2012, 473-498 Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. <i>Physical Review B</i> , 2011, 83, Hybridized metal slit eigenmodes as an illustration of Babinet's principle. <i>ACS Nano</i> , 2011, 5, 6701-6 Surface plasmon modes of a single silver nanorod: an electron energy loss study. <i>Optics Express</i> ,	3.3	4 74 48
141 140 139	Sample Preparation Techniques for Transmission Electron Microscopy 2012, 473-498 Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. <i>Physical Review B</i> , 2011, 83, Hybridized metal slit eigenmodes as an illustration of Babinet's principle. <i>ACS Nano</i> , 2011, 5, 6701-6 Surface plasmon modes of a single silver nanorod: an electron energy loss study. <i>Optics Express</i> , 2011, 19, 15371-9 EELS and EFTEM of Surface Plasmons in Metallic Nanostructures. <i>Microscopy and Microanalysis</i> ,	3.3 16.7 3.3	4 74 48 116
141 140 139 138	Sample Preparation Techniques for Transmission Electron Microscopy 2012, 473-498 Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. <i>Physical Review B</i> , 2011, 83, Hybridized metal slit eigenmodes as an illustration of Babinet's principle. <i>ACS Nano</i> , 2011, 5, 6701-6 Surface plasmon modes of a single silver nanorod: an electron energy loss study. <i>Optics Express</i> , 2011, 19, 15371-9 EELS and EFTEM of Surface Plasmons in Metallic Nanostructures. <i>Microscopy and Microanalysis</i> , 2011, 17, 762-763 Low-Dose Strain Mapping by Dark-Field Inline Electron Holography. <i>Microscopy and Microanalysis</i> ,	3.3 16.7 3.3	4 74 48 116

133	Structural evolution of magnesium difluoride: from an amorphous deposit to a new polymorph. <i>Inorganic Chemistry</i> , 2011 , 50, 1563-9	5.1	19	
132	Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. <i>ACS Nano</i> , 2011 , 5, 9845-53	16.7	67	
131	Electric conduction properties of boron-doped ceria. Solid State Ionics, 2011, 192, 65-69	3.3	20	
130	Comparison of Different Oxidation Methods for Recalcitrance Removal of Landfill Leachate. <i>Ozone: Science and Engineering</i> , 2011 , 33, 294-300	2.4	20	
129	Polarity-driven nickel oxide precipitation in LaNiO3-LaAlO3 superlattices. <i>Applied Physics Letters</i> , 2011 , 99, 211903	3.4	30	
128	Characterization of Dentine, Dentinal Tubules and Dentine-Enamel Junction in Human Teeth by Advanced Analytical TEM. <i>Microscopy and Microanalysis</i> , 2011 , 17, 286-287	0.5	2	
127	The Stuttgart Center for Electron Microscopy at the Max Planck Institute for Metals Research. <i>International Journal of Materials Research</i> , 2011 , 102, 815-827	0.5		
126	Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers. <i>Journal of Microscopy</i> , 2010 , 237, 347-51	1.9	2	
125	Transmission electron microscopy study of erbium silicide formation from Ti/Er stack for Schottky contact applications. <i>Journal of Microscopy</i> , 2010 , 237, 379-83	1.9	5	
124	Correlating the structural, chemical, and optical properties at nanometer resolution. <i>Journal of Applied Physics</i> , 2010 , 107, 013501	2.5	9	
123	Direct bandgap measurements in a three-dimensionally macroporous silicon 9R polytype using monochromated transmission electron microscope. <i>Applied Physics Letters</i> , 2010 , 97, 213102	3.4	8	
122	3D Elemental Mapping in Nanomaterials by Core-Loss EFTEM Tomography. <i>Microscopy and Microanalysis</i> , 2010 , 16, 1842-1843	0.5	2	
121	Determining the morphology of polystyrene-block-poly(2-vinylpyridine) micellar reactors for ZnO nanoparticle synthesis. <i>Langmuir</i> , 2010 , 26, 7431-6	4	11	
120	Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10671-3	16.4	14	
119	Microemulsions as Reaction Media for the Synthesis of Bimetallic Nanoparticles: Size and Composition of Particles. <i>Chemistry of Materials</i> , 2010 , 22, 6263-6271	9.6	28	
118	Low-loss EFTEM Imaging of Surface Plasmon Resonances in Ag Nanostructures. <i>Microscopy and Microanalysis</i> , 2010 , 16, 1438-1439	0.5	1	
117	Strain Mapping of 45 nm MOSFET by Dark-Field Inline Electron Holography. <i>Microscopy and Microanalysis</i> , 2010 , 16, 592-593	0.5		
116	ELNES Investigations of Interfaces in Abalone Shell. <i>Microscopy and Microanalysis</i> , 2010 , 16, 1218-1219	0.5	1	

115	Characterization of ytterbium silicide formed in ultra high vacuum. <i>Journal of Physics: Conference Series</i> , 2010 , 209, 012056	0.3	
114	An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices. <i>Applied Physics Letters</i> , 2010 , 96, 091901	3.4	63
113	Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates. <i>ACS Nano</i> , 2010 , 4, 1805-12	16.7	27
112	EFTEM study of surface plasmon resonances in silver nanoholes. <i>Ultramicroscopy</i> , 2010 , 110, 1094-1100	3.1	14
111	Preparation and characterization of size-controlled CeO2 nanoparticles coated with SiO2. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 2045-2049	2.3	13
110	A carbon/titanium vanadium nitride composite for lithium storage. <i>ChemPhysChem</i> , 2010 , 11, 3219-23	3.2	43
109	Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. <i>Advanced Materials</i> , 2010 , 22, 2247-50	24	518
108	Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. <i>Advanced Materials</i> , 2010 , 22, 3650-4	24	189
107	A novel germanium/carbon nanotubes nanocomposite for lithium storage material. <i>Electrochimica Acta</i> , 2010 , 55, 985-988	6.7	73
106	Thickness dependent microstructural changes in La0.5Ca0.5MnO3 thin films deposited on (111) SrTiO3. <i>Thin Solid Films</i> , 2010 , 518, 4667-4669	2.2	2
105	Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy. <i>Solid State Ionics</i> , 2010 , 181, 1616-1622	3.3	8
104	Synthesis and characterization of N-rich single crystalline SiOxNy nanowires with three-dimensional branches. <i>Applied Physics Letters</i> , 2009 , 94, 231903	3.4	5
103	Delithiation Study of LiFePO[sub 4] Crystals Using Electron Energy-Loss Spectroscopy. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A151		44
102	Toughening through nature-adapted nanoscale design. <i>Nano Letters</i> , 2009 , 9, 4103-8	11.5	63
101	Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6485-9	16.4	530
100	Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties. <i>Thin Solid Films</i> , 2009 , 517, 2545-2549	2.2	45
99	Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy. <i>Thin Solid Films</i> , 2009 , 517, 2048-2054	2.2	4
98	Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2009 , 109, 1164-70	3.1	28

(2008-2009)

97	Nano-crystallization in LaF3Na2OAl2O3BiO2 glass. <i>Journal of Crystal Growth</i> , 2009 , 311, 4350-4355	1.6	46
96	Carbon incorporation and deactivation of MgO(0 0 1) supported Pd nanoparticles during CO oxidation. <i>Catalysis Today</i> , 2009 , 145, 243-250	5.3	17
95	The Importance of Grain Boundaries for the Time-Dependent Mobility Degradation in Organic Thin-Film Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 4949-4954	9.6	38
94	Various transmission electron microscopic techniques to characterize phase separation Illustrated using a LaF3 containing aluminosilicate glass. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 393-396	3.9	19
93	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. <i>Optics Letters</i> , 2009 , 34, 1003-5	3	77
92	Electron energy losses in Ag nanoholesfrom localized surface plasmon resonances to rings of fire. <i>Optics Letters</i> , 2009 , 34, 2150-2	3	42
91	Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. <i>Physical Review B</i> , 2009 , 79,	3.3	326
90	Annealing effect on ion conduction of nanosized CaF2/BaF2 multilayers. <i>Journal of Applied Physics</i> , 2009 , 105, 114321	2.5	3
89	One-Dimensional Phthalocyanine Nanostructures Directed by Gold Templates. <i>Chemistry of Materials</i> , 2009 , 21, 5010-5015	9.6	13
_			
88	Phase separation in GaN/AlGaN quantum dots. <i>Applied Physics Letters</i> , 2009 , 95, 141901	3.4	14
88 87	Phase separation in GaN/AlGaN quantum dots. <i>Applied Physics Letters</i> , 2009 , 95, 141901 DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302	3.4	14 27
			27
87	DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302 Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based	3.4	27
8 ₇ 86	DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302 Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5 Nanostructure Characterization of Conical Silicon Carbide Nanowires and Heterostructures Induced	3.4	27 377
87 86 85	DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302 Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5 Nanostructure Characterization of Conical Silicon Carbide Nanowires and Heterostructures Induced by Release Catalysis. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1546-1547 Crystalline silicon carbide nanocones and heterostructures induced by released iron nanoparticles.	3·4 16.4 0.5	27 377 1
87 86 85 84	DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302 Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5 Nanostructure Characterization of Conical Silicon Carbide Nanowires and Heterostructures Induced by Release Catalysis. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1546-1547 Crystalline silicon carbide nanocones and heterostructures induced by released iron nanoparticles. <i>Applied Physics Letters</i> , 2008 , 93, 233113	3.4 16.4 0.5	27 377 1
87 86 85 84 83	DNA-templated synthesis of ZnO thin layers and nanowires. <i>Nanotechnology</i> , 2009 , 20, 365302 Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15984-5 Nanostructure Characterization of Conical Silicon Carbide Nanowires and Heterostructures Induced by Release Catalysis. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1546-1547 Crystalline silicon carbide nanocones and heterostructures induced by released iron nanoparticles. <i>Applied Physics Letters</i> , 2008 , 93, 233113 New Ceramic Phases in the Ternary Si-C-N System. <i>Key Engineering Materials</i> , 2008 , 403, 147-148 Transmission electron microscopy study of the intermixing of FeBt multilayers. <i>Journal of Applied</i>	3.4 16.4 0.5 3.4	27 377 1 13

79	Application of Monochromated Electrons in EELS. <i>Microscopy and Microanalysis</i> , 2008 , 14, 134-135	0.5	2
78	Novel binary and ternary phases in the Si-C-N system. <i>Journal of the Ceramic Society of Japan</i> , 2008 , 116, 674-680	1	11
77	Effect of surface orientation on intrinsic island formation on SrTiO3surfaces. <i>Journal of Physics:</i> Conference Series, 2008 , 94, 012013	0.3	1
76	VEELS band gap measurements using monochromated electrons. <i>Journal of Physics: Conference Series</i> , 2008 , 126, 012005	0.3	3
75	Transmission electron microscopy study of the platinum germanide formation process in the Ge/Pt/Ge/SiO2/Si structure. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 154-155, 175-178	3.1	2
74	The modification of MoO3 nanoparticles supported on mesoporous SBA-15: characterization using X-ray scattering, N2 physisorption, transmission electron microscopy, high-angle annular darkfield technique, Raman and XAFS spectroscopy. <i>Journal of Materials Science</i> , 2008 , 43, 244-253	4.3	34
73	Self-assembly of phthalocyanine nanotubes by vapor-phase transport. <i>ChemPhysChem</i> , 2008 , 9, 1114-6	3.2	11
72	Aqueous Deposition of Ultraviolet Luminescent Columnar Tin-Doped Indium Hydroxide Films. <i>Advanced Functional Materials</i> , 2008 , 18, 2572-2583	15.6	9
71	A Germanium Carbon Nanocomposite Material for Lithium Batteries. Advanced Materials, 2008, 20, 3079	9- <u>3</u>	252
70	Grain-boundary plane orientation dependence of electrical barriers at B boundaries in SrTiO3. Acta Materialia, 2008 , 56, 4993-4997	8.4	9
69	Chemical bonds in damaged and pristine low-limaterials: A comparative EELS study. <i>Microelectronic Engineering</i> , 2008 , 85, 2169-2171	2.5	1
68	Yttrium Aluminum Garnet as a Scavenger for Ca and Si. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3663-3667	3.8	6
67	Studying nanocrystallization behaviour of different inorganic glasses using Transmission Electron Microscopy 2008 , 523-524		
66	Analytical TEM investigations of Pt/YSZ interfaces 2008 , 369-370		
65	Determination of precise orientation relationships between surface precipitates and matrix in a duplex stainless steel 2008 , 659-660		
64	Amorphisation in fresnoite compounds 🗈 combined ELNES and XANES study 2008 , 821-822		
63	Study of the intermixing of Fe-Pt multilayers by analytical and high-resolution transmission electron microscopy 2008 , 109-110		
62	Band gap mapping using monochromated electrons 2008 , 381-382		

Quantitative local strain analysis of Si/SiGe heterostructures using HRTEM 2008, 141-142 61 Direct observation of surface oxidation of Rh nanoparticles on (001) MgO 2008, 225-226 60 Nonlinear Electron Inline Holography 2008, 263-264 59 Preparation of SiC/SiC thin foils for TEM observations by wedge polishing method 2008, 817-818 58 Software Precession Electron Diffraction 2008, 201-202 2 57 Sub-0.5 eV EFTEM Mapping using the Zeiss SESAM 2008, 447-448 56 2 Low-loss-energy EFTEM imaging of triangular silver nanoparticles 2008, 243-244 55 1 High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angewandte Chemie -16.4 74 54 *International Edition*, **2007**, 46, 1476-80 The origin of high-mismatch orientation relationships for ultra-thin oxide overgrowths. Acta 8.4 53 39 Materialia, **2007**, 55, 6027-6037 Internal strain formed in oxide ceramics upon spark-plasma sintering. Philosophical Magazine, 2007, 1.6 52 87, 4555-4566 Electron Magnetic Linear Dichroism (EMLD) and Electron Magnetic Circular Dichroism (EMCD) in 6 51 0.5 Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2007, 13, 426-427 Manifestation of incommensurate structural modulations in the Ti- L 2,3 electron energy-loss 50 7 near-edge structure of Sr2TiSi2O8. Philosophical Magazine Letters, 2007, 87, 431-439 Silicon Carbide Nanowire Heterostructures Constructed from Released Iron Catalysis. Materials 49 Research Society Symposia Proceedings, 2007, 1058, 1 Interfaces in semiconductor/metal radial superlattices. Applied Physics Letters, 2007, 90, 263107 48 3.4 27 Low-loss EELS with Monochromated Electrons. Microscopy and Microanalysis, 2007, 13, 54-55 0.5 47 Mapping Grain Boundary Potentials by Inline Electron Holography. Microscopy and Microanalysis, 46 0.5 **2007**, 13, 334-335 Band-gap measurements of direct and indirect semiconductors using monochromated electrons. 82 45 3.3 Physical Review B, 2007, 75, Experimental Assessment of Structural Differences between Amorphous and Amorphized Matter. 9.6 Chemistry of Materials, 2006, 18, 5351-5354

43	Single Crystals of a new Carbon Nitride Phase. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2006 , 632, 2127-2127	1.3	
42	1s2p resonant inelastic X-ray scattering of iron oxides. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20751	-6.2	96
41	Crystal chemistry of wadsleyite II and water in the Earth interior. <i>Physics and Chemistry of Minerals</i> , 2005 , 31, 691-705	1.6	21
40	Coordination of transition-metals in glasses from high-resolution electron energy-loss spectroscopy. <i>Physica Status Solidi A</i> , 2005 , 202, 2355-2360		10
39	Crystal structure and cation distribution in Fe7SiO10 ("Iscorite"). <i>European Journal of Mineralogy</i> , 2005 , 17, 723-731	2.2	5
38	Assessment of transition-metal coordination in glasses by electron energy-loss spectroscopy. <i>Physical Review B</i> , 2005 , 72,	3.3	19
37	Electron energy-loss spectroscopy at incommensurately modulated crystalline and glassy Ba2TiGe2O8. <i>Philosophical Magazine</i> , 2004 , 84, 3117-3132	1.6	14
36	Insights into oxygen-cation bonding in fresnoite-type structures from O K- and Ti L23-electron energy-loss spectra and ab initio calculations of the electronic structure. <i>Physics and Chemistry of Minerals</i> , 2004 , 31, 543-552	1.6	19
35	Iron oxidation state in lower mantle mineral assemblages: I. Empirical relations derived from high-pressure experiments. <i>Earth and Planetary Science Letters</i> , 2004 , 222, 435-449	5.3	49
34	Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 143-144, 157-169	2.3	60
33	Magnetic Linear Dichroism in Electron Energy-Loss Spectra of alpha-Fe2O3. <i>Microscopy and Microanalysis</i> , 2004 , 10, 88-89	0.5	
32	Characterization of Iron Valence State and Magnetic Linear Dichroism in Minerals by Electron Energy-Loss Spectroscopy. <i>Microscopy and Microanalysis</i> , 2003 , 9, 320-321	0.5	3
31	Strong magnetic linear dichroism in Fe L 23 and O K electron energy-loss near-edge spectra of antiferromagnetic hematite Fe2O3. <i>Physics and Chemistry of Minerals</i> , 2003 , 30, 469-477	1.6	31
30	An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). <i>Journal of Non-Crystalline Solids</i> , 2003 , 320, 255-280	3.9	203
29	Synthesis and characterization of mixed-valence barium titanates. <i>Philosophical Magazine</i> , 2003 , 83, 165	-1.88	17
28	Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra. <i>Physics and Chemistry of Minerals</i> , 2002 , 29, 188-200	1.6	261
27	The heterogeneous composition of working place aerosols in a nickel refinery: a transmission and scanning electron microscope study. <i>Journal of Environmental Monitoring</i> , 2002 , 4, 344-50		25
26	Oxygen Vacancies in Perovskite and Related Structures: Implications for the Lower Mantle. Materials Research Society Symposia Proceedings, 2002, 718, 1		1

25	FelMg partitioning between ringwoodite and magnesiowlite and the effect of pressure, temperature and oxygen fugacity. <i>Physics and Chemistry of Minerals</i> , 2001 , 28, 455-470	1.6	52
24	Nanocrystalline, porous periclase aggregates as product of brucite dehydration. <i>European Journal of Mineralogy</i> , 2001 , 13, 329-341	2.2	23
23	MBsbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. <i>Contributions To Mineralogy and Petrology</i> , 2000 , 138, 17-26	3.5	124
22	Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: I. Synthesis conditions, chemical and spectroscopic evidence. <i>European Journal of Mineralogy</i> , 2000 , 12, 529-541	2.2	31
21	ELNES spectroscopy and XANES calculations of the O K edge: Orientation dependence and effects of protons in Mg(OH)2. <i>Physical Review B</i> , 1999 , 60, 3815-3820	3.3	10
20	Microanalysis of Fe3+/He in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M 2,3 edge. <i>Physics and Chemistry of Minerals</i> , 1999 , 26, 584-590	1.6	37
19	Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure. <i>Physics and Chemistry of Minerals</i> , 1998 , 25, 83-93	1.6	16
18	Quantitative determination of iron oxidation states in minerals using Fe L 2,3 -edge electron energy-loss near-edge structure spectroscopy. <i>Physics and Chemistry of Minerals</i> , 1998 , 25, 323-327	1.6	244
17	Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K-edge. <i>Physics and Chemistry of Minerals</i> , 1998 , 25, 494-498	1.6	46
16	Extended energy-loss fine structure spectroscopy of structural modifications in Nd2CuO4lat the oxygen K edge. <i>Journal of Microscopy</i> , 1996 , 183, 9-17	1.9	1
15	Perovskite-like intergrowth structure of the reduced cuprate Nd2CuO3.5: a combination of defect and excess oxygen non-stoichiometry phenomena. <i>Journal of Materials Chemistry</i> , 1994 , 4, 895-898		10
14	Strong reduction of the electron-doped superconductor Nd2 IkCexCuO4 IIPhysica C: Superconductivity and Its Applications, 1993 , 211, 421-432	1.3	10
13	Superstructure formation in the electron-doped superconducting system Nd2\(\mathbb{Q}\)CexCuO4\(\mathbb{D}\) Physica C: Superconductivity and Its Applications, 1991 , 174, 63-70	1.3	14
12	EELS of YBa2Cu3O7N in the TEM. A High Spatial Resolution Method for Analysing the Electronic Structure of High-Tc YBa2Cu3O7N Thin Films. <i>Physica Status Solidi A</i> , 1991 , 128, 129-137		8
11	Cu core-level spectroscopy of Nd2-xCexCuO4. <i>Physical Review B</i> , 1991 , 44, 2320-2325	3.3	12
10	Soft x-ray absorption study of R2Cu04-x. <i>Physica B: Condensed Matter</i> , 1990 , 165-166, 1265-1266	2.8	1
9	Pair breaking effects in heavy fermion superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1988 , 153-155, 449-450	1.3	6
8	Pair breaking in the heavy-fermion superconductors Ce1\(\textbf{M}\) MxCu2.2Si2 and U1\(\textbf{M}\) MxBe13 (M: Th, La, Y and Gd). Journal of Magnetism and Magnetic Materials, 1988 , 76-77, 520-522	2.8	13

7	Evidence for antiferromagnetism in Ce1 LaxCu2.2Si2 below 10 K. <i>Journal of Magnetism and Magnetic Materials</i> , 1988 , 76-77, 523-524	2.8	6
6	Possibly Mixed Valency of Uranium in UNi5⊠Cux. <i>Physical Review Letters</i> , 1975 , 34, 1457-1460	7.4	88
5	Kondo sideband effects in the Seebeck coefficient of Ce1 LaxAlx compounds. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1974, 49, 201-203	2.3	35
4	The seebeck coefficient of YbAl2 and YbAl3. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1974 , 49, 246-248	2.3	69
3	Kondo Sidebands in CeAl3 and Related Pseudobinary Compounds. <i>Physical Review B</i> , 1971 , 3, 1662-1670	03.3	63
2	Poster: Polar Dielectrics, Optics, and Ionics633-663		
1	Tunable Magnetic Anisotropy in Patterned SrRuO 3 Quantum Structures: Competition between Lattice Anisotropy and Oxygen Octahedral Rotation. <i>Advanced Functional Materials</i> ,2108475	15.6	5