Peter A Van Aken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086147/publications.pdf

Version: 2024-02-01

400 papers

19,243 citations

70 h-index 129 g-index

424 all docs

424 docs citations

times ranked

424

21142 citing authors

#	Article	lF	CITATIONS
1	Singleâ€Layered Ultrasmall Nanoplates of MoS ₂ Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. Angewandte Chemie - International Edition, 2014, 53, 2152-2156.	7.2	826
2	Reversible Storage of Lithium in Silverâ€Coated Threeâ€Dimensional Macroporous Silicon. Advanced Materials, 2010, 22, 2247-2250.	11.1	558
3	Encapsulation of Sn@carbon Nanoparticles in Bambooâ€like Hollow Carbon Nanofibers as an Anode Material in Lithiumâ€Based Batteries. Angewandte Chemie - International Edition, 2009, 48, 6485-6489.	7.2	551
4	Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale, 2014, 6, 1384-1389.	2.8	542
5	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes. Nano Letters, 2014, 14, 2175-2180.	4.5	446
6	Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries. Journal of the American Chemical Society, 2009, 131, 15984-15985.	6.6	404
7	Uniform yolk–shell Sn ₄ P ₃ @C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy and Environmental Science, 2015, 8, 3531-3538.	15.6	401
8	Self-Supported Li ₄ Ti ₅ O ₁₂ –C Nanotube Arrays as High-Rate and Long-Life Anode Materials for Flexible Li-Ion Batteries. Nano Letters, 2014, 14, 2597-2603.	4.5	397
9	Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Physical Review B, 2009, 79, .	1.1	343
10	Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605650.	11.1	325
11	MOFâ€Derived Hollow Co ₉ S ₈ Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Liâ€Ion Storage. Small, 2016, 12, 2354-2364.	5.2	306
12	Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra. Physics and Chemistry of Minerals, 2002, 29, 188-200.	0.3	303
13	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	11.1	298
14	Exfoliation of a non-van der Waals material from iron ore hematite. Nature Nanotechnology, 2018, 13, 602-609.	15.6	295
15	Facile Solidâ€State Growth of 3D Wellâ€Interconnected Nitrogenâ€Rich Carbon Nanotube–Graphene Hybrid Architectures for Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 1112-1119.	7.8	281
16	Quantitative determination of iron oxidation states in minerals using Fe L 2,3 -edge electron energy-loss near-edge structure spectroscopy. Physics and Chemistry of Minerals, 1998, 25, 323-327.	0.3	279
17	A Germanium–Carbon Nanocomposite Material for Lithium Batteries. Advanced Materials, 2008, 20, 3079-3083.	11.1	271
18	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale, 2014, 6, 5081.	2.8	266

#	Article	IF	CITATIONS
19	Synthesizing Porous NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. ACS Nano, 2015, 9, 6610-6618.	7.3	260
20	Facile Synthesis of Highly Porous Ni–Sn Intermetallic Microcages with Excellent Electrochemical Performance for Lithium and Sodium Storage. Nano Letters, 2014, 14, 6387-6392.	4.5	257
21	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9632-9636.	7.2	245
22	Peapodâ€Like Carbonâ€Encapsulated Cobalt Chalcogenide Nanowires as Cycleâ€Stable and Highâ€Rate Materials for Sodiumâ€Ion Anodes. Advanced Materials, 2016, 28, 7276-7283.	11.1	237
23	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	13.3	235
24	An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). Journal of Non-Crystalline Solids, 2003, 320, 255-280.	1.5	231
25	"Nanoâ€Pearlâ€String―TiNb ₂ O ₇ as Anodes for Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 49-53.	10.2	220
26	High Performance Graphene/Ni ₂ P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk–Shellâ€Like Nanostructural Design. Advanced Materials, 2017, 29, 1604015.	11.1	220
27	Hollow Carbon Nanospheres with a High Rate Capability for Lithiumâ€Based Batteries. ChemSusChem, 2012, 5, 400-403.	3.6	215
28	Lowâ€Temperature Ionicâ€Liquidâ€Based Synthesis of Nanostructured Ironâ€Based Fluoride Cathodes for Lithium Batteries. Advanced Materials, 2010, 22, 3650-3654.	11,1	209
29	High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network. Advanced Materials, 2016, 28, 2409-2416.	11.1	205
30	Carbonâ€Encapsulated Pyrite as Stable and Earthâ€Abundant High Energy Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 2014, 26, 6025-6030.	11.1	201
31	Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries. ACS Nano, 2014, 8, 7051-7059.	7.3	198
32	3D V ₆ O ₁₃ Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries. Nano Letters, 2015, 15, 1388-1394.	4.5	194
33	A General Strategy to Fabricate Carbonâ€Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for Highâ€Performance Lithium and Sodium Ion Batteries. Advanced Science, 2015, 2, 1500200.	5.6	193
34	An FeF $<$ sub $>3<$ /sub $>\hat{A}\cdot0.5H<$ sub $>2<$ /sub >0 Polytype: A Microporous Framework Compound with Intersecting Tunnels for Li and Na Batteries. Journal of the American Chemical Society, 2013, 135, 11425-11428.	6.6	177
35	A high-performance self-powered broadband photodetector based on a CH ₃ NH ₃ Pbl ₃ perovskite/ZnO nanorod array heterostructure. Journal of Materials Chemistry C, 2016, 4, 7302-7308.	2.7	159
36	Fast Li Storage in MoS ₂ â€Grapheneâ€Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. Advanced Energy Materials, 2015, 5, 1401170.	10.2	155

#	Article	IF	Citations
37	High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. Advanced Functional Materials, 2015, 25, 2335-2342.	7.8	148
38	Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contributions To Mineralogy and Petrology, 2000, 138, 17-26.	1.2	143
39	A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage. Advanced Materials, 2016, 28, 7774-7782.	11.1	142
40	Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible. Nano Letters, 2012, 12, 5239-5244.	4.5	141
41	A High Power–High Energy Na ₃ V ₂ Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization. Chemistry of Materials, 2017, 29, 5207-5215.	3.2	141
42	Surface plasmon modes of a single silver nanorod: an electron energy loss study. Optics Express, 2011, 19, 15371.	1.7	126
43	Ultrathin Ti ₂ Nb ₂ O ₉ Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodiumâ€ion Batteries. Advanced Materials, 2018, 30, e1804378.	11.1	117
44	Charge separation and transport in La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 2017, 37, 195-202.	8.2	115
45	A Sulfur–Limoneneâ€Based Electrode for Lithium–Sulfur Batteries: Highâ€Performance by Selfâ€Protection. Advanced Materials, 2018, 30, e1706643.	11.1	114
46	A Highâ€Capacity Cathode for Lithium Batteries Consisting of Porous Microspheres of Highly Amorphized Iron Fluoride Densified from Its Open Parent Phase. Advanced Energy Materials, 2013, 3, 113-119.	10.2	111
47	1s2p Resonant Inelastic X-ray Scattering of Iron Oxides. Journal of Physical Chemistry B, 2005, 109, 20751-20762.	1.2	108
48	Dopant Segregation and Space Charge Effects in Proton-Conducting BaZrO ₃ Perovskites. Journal of Physical Chemistry C, 2012, 116, 2453-2461.	1.5	106
49	Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B, 2007, 75, .	1.1	103
50	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	7.3	99
51	Preparation and characterization of Sm and Ca co-doped ceria–La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^îÎ} semicondu composites for electrolyte-layer-free fuel cells. Journal of Materials Chemistry A, 2016, 4, 15426-15436.	uc t oz–id	on ic 7
52	Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics, 2018, 7, 93-110.	2.9	96
53	In situ reduction and coating of SnS ₂ nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. Journal of Materials Chemistry A, 2015, 3, 5259-5265.	5.2	92
54	Possibly Mixed Valency of Uranium inUNi5â^'xCux. Physical Review Letters, 1975, 34, 1457-1460.	2.9	91

#	Article	IF	Citations
55	Grapheneâ€Protected 3D Sbâ€based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. Small, 2015, 11, 6026-6035.	5.2	87
56	Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Physics of the Earth and Planetary Interiors, 2004, 143-144, 157-169.	0.7	85
57	3D Honeycomb Architecture Enables a Highâ€Rate and Longâ€Life Iron (III) Fluoride–Lithium Battery. Advanced Materials, 2019, 31, e1905146.	11.1	84
58	High-Pressure Synthesis of Crystalline Carbon Nitride Imide, C2N2(NH). Angewandte Chemie - International Edition, 2007, 46, 1476-1480.	7.2	82
59	Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Physical Review B, 2011, 83, .	1.1	81
60	Phase Boundary Propagation in Large LiFePO4 Single Crystals on Delithiation. Journal of the American Chemical Society, 2012, 134, 2988-2992.	6.6	81
61	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€5torage Performance. Angewandte Chemie - International Edition, 2019, 58, 7238-7243.	7.2	80
62	Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 20813.	1.3	78
63	Elucidating the Mechanism of an RbF Post Deposition Treatment in CIGS Thin Film Solar Cells. Solar Rrl, 2018, 2, 1800156.	3.1	78
64	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Optics Letters, 2009, 34, 1003.	1.7	77
65	A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochimica Acta, 2010, 55, 985-988.	2.6	77
66	Visualization of Multipolar Longitudinal and Transversal Surface Plasmon Modes in Nanowire Dimers. ACS Nano, 2011, 5, 9845-9853.	7.3	77
67	The seebeck coefficient of YbAl2 and YbAl3. Physics Letters, Section A: General, Atomic and Solid State Physics, 1974, 49, 246-248.	0.9	75
68	Experimental realization of graded L1-FePt/Fe composite media with perpendicular magnetization. Journal of Applied Physics, 2008, 104 , .	1.1	74
69	The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. Chemical Engineering Journal, 2015, 280, 728-736.	6.6	73
70	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS ₂ /C nanocomposite. Journal of Materials Chemistry A, 2015, 3, 20487-20493.	5.2	71
71	An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices. Applied Physics Letters, 2010, 96, .	1.5	69
72	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	7.3	69

#	Article	IF	Citations
73	Toughening through Nature-Adapted Nanoscale Design. Nano Letters, 2009, 9, 4103-4108.	4.5	66
74	Kondo Sidebands in CeAl3and Related Pseudobinary Compounds. Physical Review B, 1971, 3, 1662-1670.	1.1	64
75	Excitation of Mesoscopic Plasmonic Tapers by Relativistic Electrons: Phase Matching <i>versus</i> Eigenmode Resonances. ACS Nano, 2015, 9, 7641-7648.	7.3	61
76	Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. Journal of Power Sources, 2020, 448, 227403.	4.0	60
77	Fe-Mg partitioning between ringwoodite and magnesiowüstite and the effect of pressure, temperature and oxygen fugacity. Physics and Chemistry of Minerals, 2001, 28, 455-470.	0.3	59
78	Iron oxidation state in lower mantle mineral assemblages. Earth and Planetary Science Letters, 2004, 222, 435-449.	1.8	59
79	Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K -edge. Physics and Chemistry of Minerals, 1998, 25, 494-498.	0.3	58
80	Oxygen octahedra picker: A software tool to extract quantitative information from STEM images. Ultramicroscopy, 2016, 168, 46-52.	0.8	55
81	Hybridized Metal Slit Eigenmodes as an Illustration of Babinet's Principle. ACS Nano, 2011, 5, 6701-6706.	7.3	54
82	Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: I. Synthesis conditions, chemical and spectroscopic evidence. European Journal of Mineralogy, 2000, 12, 529-541.	0.4	53
83	High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping. Nature Communications, 2015, 6, 8586.	5.8	53
84	Fuelâ€Free Nanocapâ€Like Motors Actuated Under Visible Light. Advanced Functional Materials, 2018, 28, 1705862.	7.8	52
85	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.	9.5	50
86	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	7.8	50
87	Delithiation Study of LiFePO[sub 4] Crystals Using Electron Energy-Loss Spectroscopy. Electrochemical and Solid-State Letters, 2009, 12, A151.	2.2	49
88	Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties. Thin Solid Films, 2009, 517, 2545-2549.	0.8	49
89	A Carbon/Titanium Vanadium Nitride Composite for Lithium Storage. ChemPhysChem, 2010, 11, 3219-3223.	1.0	49
90	Nano-crystallization in LaF3–Na2O–Al2O3–SiO2 glass. Journal of Crystal Growth, 2009, 311, 4350-4355.	0.7	48

#	Article	IF	Citations
91	Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage. Small, 2015, 11, 2011-2018.	5.2	48
92	The Importance of Grain Boundaries for the Time-Dependent Mobility Degradation in Organic Thin-Film Transistors. Chemistry of Materials, 2009, 21, 4949-4954.	3.2	47
93	Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se ₂ thin films for solar cells – a review. Physica Status Solidi - Rapid Research Letters, 2016, 10, 363-375.	1.2	47
94	Sample tilt effects on atom column position determination in ABF–STEM imaging. Ultramicroscopy, 2016, 160, 110-117.	0.8	47
95	Experimental investigation of smectite interaction with metal iron at 80 ÂC: Structural characterization of newly formed Fe-rich phyllosilicates. American Mineralogist, 2012, 97, 864-871.	0.9	46
96	Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry. APL Materials, 2014, 2, .	2.2	46
97	Long-range charge-density-wave proximity effect at cuprate/manganate interfaces. Nature Materials, 2016, 15, 831-834.	13.3	46
98	Au–Ag Hybrid Nanoparticle Patterns of Tunable Size and Density on Glass and Polymeric Supports. Langmuir, 2012, 28, 1562-1568.	1.6	45
99	Electron energy losses in Ag nanoholesâ€"from localized surface plasmon resonances to rings of fire. Optics Letters, 2009, 34, 2150.	1.7	44
100	Microanalysis of Fe $3+\hat{l}$ £Fe in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M 2,3 edge. Physics and Chemistry of Minerals, 1999, 26, 584-590.	0.3	43
101	Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. Electrochemistry Communications, 2013, 28, 54-57.	2.3	43
102	Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi ₂ Se ₃ Probed by Electron Beams. ACS Nano, 2016, 10, 6988-6994.	7.3	43
103	The origin of high-mismatch orientation relationships for ultra-thin oxide overgrowths. Acta Materialia, 2007, 55, 6027-6037.	3.8	42
104	Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells. Energy and Environmental Science, 2016, 9, 1818-1827.	15.6	42
105	Multipole Surface Plasmon Resonances in Conductively Coupled Metal Nanowire Dimers. ACS Nano, 2012, 6, 9711-9717.	7.3	39
106	Evolution of order in amorphous-to-crystalline phase transformation of MgF ₂ . Journal of Applied Crystallography, 2013, 46, 1105-1116.	1.9	39
107	Direct Observation of Huge Flexoelectric Polarization around Crack Tips. Nano Letters, 2020, 20, 88-94.	4.5	39
108	The modification of MoO3 nanoparticles supported on mesoporous SBA-15: characterization using X-ray scattering, N2 physisorption, transmission electron microscopy, high-angle annular darkfield technique, Raman and XAFS spectroscopy. Journal of Materials Science, 2008, 43, 244-253.	1.7	38

#	Article	IF	CITATIONS
109	Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. Environmental Science: Water Research and Technology, 2019, 5, 444-481.	1.2	38
110	Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor. Frontiers in Chemistry, 2020, 8, 663.	1.8	38
111	Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity. Scientific Reports, 2014, 4, 7020.	1.6	37
112	Complex magnetic order in nickelate slabs. Nature Physics, 2018, 14, 1097-1102.	6.5	37
113	Kondo sideband effects in the Seebeck coefficient of $Ce1\hat{a}^{\circ}$ 'xLaxAlx compounds. Physics Letters, Section A: General, Atomic and Solid State Physics, 1974, 49, 201-203.	0.9	36
114	Chemical Modification of Single-Walled Carbon Nanotubes for the Reinforcement of Precursor-Derived Ceramics. Chemistry of Materials, 2008, 20, 5593-5599.	3.2	35
115	Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO–TiO ₂ Microswimmers. ACS Applied Materials & Driven Magnetic CoO–TiO ₂	4.0	35
116	Strong magnetic linear dichroism in Fe L23 and O K electron energy-loss near-edge spectra of antiferromagnetic hematite ?-Fe2O3. Physics and Chemistry of Minerals, 2003, 30, 469-477.	0.3	34
117	Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New Journal of Physics, 2013, 15, 053013.	1.2	34
118	A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. Journal of Cleaner Production, 2017, 161, 1432-1441.	4.6	34
119	Lithium Potential Variations for Metastable Materials: Case Study of Nanocrystalline and Amorphous LiFePO ₄ . Nano Letters, 2014, 14, 5342-5349.	4.5	33
120	Polarity-driven nickel oxide precipitation in LaNiO3-LaAlO3 superlattices. Applied Physics Letters, 2011, 99, 211903.	1.5	32
121	Ruddlesden-Popper faults in LaNiO3/LaAlO3 superlattices. Journal of Applied Physics, 2012, 112, .	1.1	32
122	Field-Effect Transistors with Submicrometer Gate Lengths Fabricated from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow>< Heterostructures. Physical Review Applied, 2015, 4, .</mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	1.5 mml:mn>3	3<
123	Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 384, 318-327.	4.0	32
124	Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates. Science Advances, 2021, 7, eabl8091.	4.7	32
125	Low-Temperature Growth of Silicon Nanotubes and Nanowires on Amorphous Substrates. ACS Nano, 2010, 4, 1805-1812.	7.3	31
126	Merging transformation optics with electron-driven photon sources. Nature Communications, 2019, 10, 599.	5.8	31

#	Article	IF	CITATIONS
127	DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology, 2009, 20, 365302.	1.3	30
128	Microemulsions as Reaction Media for the Synthesis of Bimetallic Nanoparticles: Size and Composition of Particles. Chemistry of Materials, 2010, 22, 6263-6271.	3.2	30
129	Facile Preparation of MoS ₂ Nanocomposites for Efficient Potassiumâ€lon Batteries by Grindingâ€Promoted Intercalation Exfoliation. Small, 2021, 17, e2102263. The heterogeneous composition of working place aerosols in a nickel refinery: a transmission and	5.2	30
130	scanning electron microscope studyPresented at ENVIRONMIN 2001 at Skukuza, Kruger National Park, South Africa, 14–18 July 2001.Electronic supplementary information (ESI) available: TEM bright field images, energy-dispersive X-ray spectra and electron diffraction patterns of various phases observed in the refinery at Monchegorsk; (a) godlevskite, (b) heazlewoodite, (c) bunsenite, (d) trevorite, (e)	2.1	29
131	amorphous sulf. Journal of Environmental Monitoring, 2002, 4, 344-350. Interfaces in semiconductor/metal radial superlattices. Applied Physics Letters, 2007, 90, 263107.	1.5	29
132	Hydrogenâ€Bond Reinforced Vanadia Nanofiber Paper of High Stiffness. Advanced Materials, 2013, 25, 2468-2473.	11.1	29
133	Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy. Applied Physics Letters, 2017, 110 , .	1.5	29
134	Silver nanowires with optimized silica coating as versatile plasmonic resonators. Scientific Reports, 2019, 9, 3859.	1.6	29
135	Nanocrystalline, porous periclase aggregates as product of brucite dehydration. European Journal of Mineralogy, 2001, 13, 329-341.	0.4	28
136	Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy. Ultramicroscopy, 2009, 109, 1164-1170.	0.8	28
137	Breaking the Mode Degeneracy of Surface Plasmon Resonances in a Triangular System. Langmuir, 2012, 28, 8867-8873.	1.6	28
138	Large-scale low temperature fabrication of SnO ₂ hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage. Nanoscale, 2014, 6, 11411-11418.	2.8	28
139	Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films. Scientific Reports, 2015, 5, 15767.	1.6	28
140	Reflection and Phase Matching in Plasmonic Gold Tapers. Nano Letters, 2016, 16, 6137-6144.	4.5	28
141	Dopant size effects on novel functionalities: High-temperature interfacial superconductivity. Scientific Reports, 2017, 7, 453.	1.6	28
142	Crystal chemistry of wadsleyite II and water in the Earth's interior. Physics and Chemistry of Minerals, 2005, 31, 691-705.	0.3	27
143	A nondamaging electron microscopy approach to map In distribution in InGaN light-emitting diodes. Journal of Applied Physics, 2010, 108, .	1.1	27
144	Linking Microstructure and Nanochemistry in Human Dental Tissues. Microscopy and Microanalysis, 2012, 18, 509-523.	0.2	27

#	Article	IF	CITATIONS
145	Tailoring the electronic properties of Ca2RuO4 via epitaxial strain. Applied Physics Letters, 2018, 112, .	1.5	27
146	Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 3143-3149.	3.2	26
147	Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging. Microscopy (Oxford, England), 2018, 67, i114-i122.	0.7	26
148	Inhomogeneous ferromagnetism mimics signatures of the topological Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrRuO</mml:mi><mml:mn>3<td>ml:തുള> <td>nmżensub></td></td></mml:mn></mml:msub></mml:math>	ml :തുള > <td>nmżensub></td>	nm że nsub>
149	Impact of interfacial coupling of oxygen octahedra on ferromagnetic order in La0.7Sr0.3MnO3/SrTiO3 heterostructures. Scientific Reports, 2017, 7, 40068.	1.6	25
150	Design of Complex Oxide Interfaces by Oxide Molecular Beam Epitaxy. Journal of Superconductivity and Novel Magnetism, 2020, 33, 107-120.	0.8	25
151	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
152	Comparison of Different Oxidation Methods for Recalcitrance Removal of Landfill Leachate. Ozone: Science and Engineering, 2011, 33, 294-300.	1.4	23
153	Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. Nanoscale, 2018, 10, 4952-4961.	2.8	23
154	Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling. Nature Communications, 2022, 13, 2364.	5.8	23
155	Microstructure, chemistry, and electronic structure of natural hybrid composites in abalone shell. Micron, 2013, 48, 54-64.	1.1	22
156	Adsorption and Self-Assembly of M13 Phage into Directionally Organized Structures on C and SiO ₂ Films. Langmuir, 2014, 30, 11428-11432.	1.6	22
157	Radiation of Dynamic Toroidal Moments. ACS Photonics, 2019, 6, 467-474.	3.2	22
158	Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure. Physical Review Materials, 2018, 2, .	0.9	22
159	Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K -edge extended electron energy-loss fine structure. Physics and Chemistry of Minerals, 1998, 25, 83-93.	0.3	21
160	Assessment of transition-metal coordination in glasses by electron energy-loss spectroscopy. Physical Review B, 2005, 72, .	1.1	21
161	Electric conduction properties of boron-doped ceria. Solid State Ionics, 2011, 192, 65-69.	1.3	21
162	ELNES spectroscopy and XANES calculations of the OKedge: Orientation dependence and effects of protons inMg(OH)2. Physical Review B, 1999, 60, 3815-3820.	1.1	20

#	Article	IF	CITATIONS
163	Insights into oxygen-cation bonding in fresnoite-type structures from O K- and Ti L23-electron energy-loss spectra and ab initio calculations of the electronic structure. Physics and Chemistry of Minerals, 2004, 31, 543-552.	0.3	20
164	Structural Evolution of Magnesium Difluoride: from an Amorphous Deposit to a New Polymorph. Inorganic Chemistry, 2011, 50, 1563-1569.	1.9	20
165	Toward quantitative core-loss EFTEM tomography. Ultramicroscopy, 2011, 111, 1255-1261.	0.8	20
166	Direct evidence of a conversion mechanism in a NiSnO ₃ anode for lithium ion battery application. RSC Advances, 2014, 4, 36301-36306.	1.7	20
167	On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Applied Physics A: Materials Science and Processing, 2014, 116, 947-954.	1.1	20
168	Performance Improvement of Perovskite Solar Cells Based on PCBM-Modified ZnO-Nanorod Arrays. IEEE Journal of Photovoltaics, 2016, 6, 1530-1536.	1.5	20
169	Substrate-Selective Morphology of Cesium Iodide Clusters on Graphene. ACS Nano, 2020, 14, 4626-4635.	7.3	20
170	Various transmission electron microscopic techniques to characterize phase separation – illustrated using a LaF3 containing aluminosilicate glass. Journal of Non-Crystalline Solids, 2009, 355, 393-396.	1.5	19
171	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27368-27375.	4.0	19
172	Carbon incorporation and deactivation of MgO(0 0 1) supported Pd nanoparticles during CO oxidation. Catalysis Today, 2009, 145, 243-250.	2.2	18
173	High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands. Nanoscale Research Letters, 2013, 8, 337.	3.1	18
174	Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). Journal of Structural Biology, 2016, 195, 227-237.	1.3	18
175	Grain boundary blocking effects in Sm/Yb-doped AlN ceramics. Journal of the European Ceramic Society, 2021, 41, 4870-4875.	2.8	18
176	Synthesis and characterization of mixed-valence barium titanates. Philosophical Magazine, 2003, 83, 165-178.	0.7	17
177	Transmission electron microscopy study of the intermixing of Fe–Pt multilayers. Journal of Applied Physics, 2008, 103, .	1.1	17
178	Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond. Nature Materials, 2018, 17, 243-248.	13.3	17
179	Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy. Ultramicroscopy, 2018, 184, 98-105.	0.8	17
180	High-temperature-grown buffer layer boosts electron mobility in epitaxial La-doped BaSnO3/SrZrO3 heterostructures. APL Materials, 2019, 7, .	2.2	17

#	Article	IF	CITATIONS
181	Superstructure formation in the electron-doped superconducting system Nd2â^'xCexCuO4â^'δ. Physica C: Superconductivity and Its Applications, 1991, 174, 63-70.	0.6	16
182	Crystalline silicon carbide nanocones and heterostructures induced by released iron nanoparticles. Applied Physics Letters, 2008, 93, 233113.	1.5	16
183	EFTEM study of surface plasmon resonances in silver nanoholes. Ultramicroscopy, 2010, 110, 1094-1100.	0.8	16
184	Mineralogy and defect microstructure of an olivine-dominated Itokawa dust particle: evidence for shock metamorphism, collisional fragmentation, and LL chondrite origin. Earth, Planets and Space, 2014, 66, 118.	0.9	16
185	Atomic-Scale Quantitative Analysis of Lattice Distortions at Interfaces of Two-Dimensionally Sr-Doped La ₂ CuO ₄ Superlattices. ACS Applied Materials & Interfaces, 2016, 8, 6763-6769.	4.0	16
186	Boosting Sodium Storage in TiF ₃ /Carbon Core/Sheath Nanofibers through an Efficient Mixedâ€Conducting Network. Advanced Energy Materials, 2019, 9, 1901470.	10.2	16
187	One-Dimensional Phthalocyanine Nanostructures Directed by Gold Templates. Chemistry of Materials, 2009, 21, 5010-5015.	3.2	15
188	Nanosheets of Earth-Abundant Jarosite as Novel Anodes for High-Rate and Long-Life Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10518-10524.	4.0	15
189	Phase constitution, Sr distribution and morphology of self-assembled La-Sr-Co-O composite films prepared by PLD. Solid State Ionics, 2017, 303, 172-180.	1.3	15
190	Octahedral Distortions at Highâ€Temperature Superconducting La ₂ CuO ₄ Interfaces: Visualizing Jahn–Teller Effects. Advanced Materials Interfaces, 2017, 4, 1700737.	1.9	15
191	An optimized TEM specimen preparation method of quantum nanostructures. Micron, 2021, 140, 102979.	1.1	15
192	Elemental redistributions at structural defects in $Cu(In,Ga)Se2$ thin films for solar cells. Journal of Applied Physics, 2016, 120, .	1.1	15
193	Tunable perpendicular exchange bias in oxide heterostructures. Physical Review Materials, 2019, 3, .	0.9	15
194	Determination of Grain-Boundary Structure and Electrostatic Characteristics in a SrTiO ₃ Bicrystal by Four-Dimensional Electron Microscopy. Nano Letters, 2021, 21, 9138-9145.	4.5	15
195	Pair breaking in the heavy-fermion superconductors Ce1â^'xMxCu2.2Si2 and U1â^'xMxBe13 (M: Th, La, Y and) Tj	ЕТ <u>Р.</u> 81 1 (0.784314 rg <mark>8</mark>
196	Cu core-level spectroscopy ofNd2â^'xCexCuO4. Physical Review B, 1991, 44, 2320-2325.	1.1	14
197	Electron energy-loss spectroscopy at incommensurately modulated crystalline and glassy Ba2TiGe2O8. Philosophical Magazine, 2004, 84, 3117-3132.	0.7	14
198	Phase separation in GaN/AlGaN quantum dots. Applied Physics Letters, 2009, 95, 141901.	1.5	14

#	Article	IF	Citations
199	Preparation and characterization of size-controlled CeO2 nanoparticles coated with SiO2. Journal of Nanoparticle Research, 2010, 12, 2045-2049.	0.8	14
200	Expanding Micelle Nanolithography to the Self-Assembly of Multicomponent Coreâ [^] Shell Nanoparticles. Journal of the American Chemical Society, 2010, 132, 10671-10673.	6.6	14
201	Size control of PtPb intermetallic nanoparticles prepared via microemulsions. Physical Chemistry Chemical Physics, 2011, 13, 9134.	1.3	14
202	Biomineralization of Zinc-Phosphate-Based Nano Needles by Living Microalgae. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 362-370.	1.0	14
203	Mineralization of gold nanoparticles using tailored M13 phages. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 173-185.	0.7	14
204	Stability of M13 Phage in Organic Solvents. Journal of Biomaterials and Nanobiotechnology, 2016, 07, 72-77.	1.0	14
205	Coordination of transition-metals in glasses from high-resolution electron energy-loss spectroscopy. Physica Status Solidi A, 2005, 202, 2355-2360.	1.7	13
206	Bottomâ€Up Tailoring of Plasmonic Nanopeapods Making Use of the Periodical Topography of Carbon Nanocoil Templates. Advanced Functional Materials, 2012, 22, 5157-5165.	7.8	13
207	STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers. Nanoscale, 2015, 7, 4935-4941.	2.8	13
208	Structural and magnetic properties of ferrihydrite nanoparticles. RSC Advances, 2015, 5, 39643-39650.	1.7	13
209	Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors. ACS Nano, 2017, 11, 239-248.	7.3	13
210	Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3. Communications Materials, 2021, 2, .	2.9	13
211	Perovskite-like intergrowth structure of the reduced cuprate Nd2CuO3.5: a combination of defect and excess oxygen non-stoichiometry phenomena. Journal of Materials Chemistry, 1994, 4, 895-898.	6.7	12
212	Novel binary and ternary phases in the Si-C-N system. Journal of the Ceramic Society of Japan, 2008, 116, 674-680.	0.5	12
213	High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements. Nanoscale Research Letters, 2015, 10, 1024.	3.1	12
214	Linking Atomic Structure and Local Chemistry at Manganeseâ€Segregated Antiphase Boundaries in ZrO ₂ –La _{2/3} Sr _{1/3} MnO ₃ Thin Films. Advanced Materials Interfaces, 2015, 2, 1500377.	1.9	12
215	Evidence for Cu2– <i>x</i> Se platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films. Applied Physics Letters, 2017, 111, .	1.5	12
216	High-temperature superconductivity at the lanthanum cuprate/lanthanum–strontium nickelate interface. Nanoscale, 2018, 10, 8712-8720.	2.8	12

#	Article	IF	CITATIONS
217	High-Temperature Thermoelectricity in LaNiO ₃ –La ₂ CuO ₄ Heterostructures. ACS Applied Materials & Subside Subsides and Subsides Subsi	4.0	12
218	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 7316-7321.	1.6	12
219	Tunable Magnetic Anisotropy in Patterned SrRuO ₃ Quantum Structures: Competition between Lattice Anisotropy and Oxygen Octahedral Rotation. Advanced Functional Materials, 0, , 2108475.	7.8	12
220	Selfâ€Assembly of Phthalocyanine Nanotubes by Vaporâ€Phase Transport. ChemPhysChem, 2008, 9, 1114-1116.	1.0	11
221	Direct bandgap measurements in a three-dimensionally macroporous silicon 9R polytype using monochromated transmission electron microscope. Applied Physics Letters, 2010, 97, .	1.5	11
222	Determining the Morphology of Polystyrene- <i>block</i> -poly(2-vinylpyridine) Micellar Reactors for ZnO Nanoparticle Synthesis. Langmuir, 2010, 26, 7431-7436.	1.6	11
223	Point defect segregation and its role in the detrimental nature of Frank partials in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>l:mi><mm< td=""><td>nl::mo>(</td></mm<></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	l :mi > <mm< td=""><td>nl::mo>(</td></mm<>	nl ::m o>(
224	Interface Effects on the Ion Transport of Epitaxial Y ₂ Zr ₂ O ₇ Films. ACS Applied Materials & Interfaces, 2017, 9, 27257-27265.	4.0	11
225	Long-Range Coupling of Toroidal Moments for the Visible. ACS Photonics, 2018, 5, 1326-1333.	3.2	11
226	Towards Recycling of LLZO Solid Electrolyte Exemplarily Performed on LFP/LLZO/LTO Cells**. ChemistryOpen, 2022, 11, e202100274.	0.9	11
227	Strong reduction of the electron-doped superconductor Nd2 ⰠxCexCuO4 Ⱐΰ. Physica C: Superconductivity and Its Applications, 1993, 211, 421-432.	0.6	10
228	Grain-boundary plane orientation dependence of electrical barriers at Σ5 boundaries in SrTiO3. Acta Materialia, 2008, 56, 4993-4997.	3.8	10
229	Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy. Solid State Ionics, 2010, 181, 1616-1622.	1.3	10
230	COD and AOX Removal and Biodegradability Assessment for Fenton and O ₃ /UV Oxidation Processes: A Case Study from a Graphical Industry Wastewater. Ozone: Science and Engineering, 2013, 35, 16-21.	1.4	10
231	Layer Selective Control of the Lattice Structure in Oxide Superlattices. Advanced Materials, 2014, 26, 258-262.	11.1	10
232	Influence of a Second Cation ($\langle i \rangle M \langle i \rangle = Ca \langle \sup \rangle 2 + \langle \sup \rangle$, Mg $\langle \sup \rangle 2 + \langle \sup \rangle$) on the Phase Evolution of (Ba $\langle i \rangle \langle \sup \rangle M \langle i \rangle \langle \sup \rangle 1$ a \in " $\langle i \rangle \times \langle i \rangle \langle \sup \rangle S$ tarting from Amorphous Deposits. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1868-1875.	0.6	10
233	Magnetic and magnetotransport properties of ultrathin La\${}_{0.7}\$Ba\${}_{0.3}\$MnO ₃ epitaxial films embedded in SrRuO ₃ . New Journal of Physics, 2016, 18, 053021.	1.2	10
234	Aqueous Deposition of Ultraviolet Luminescent Columnar Tinâ€Doped Indium Hydroxide Films. Advanced Functional Materials, 2008, 18, 2572-2583.	7.8	9

#	Article	IF	CITATIONS
235	Correlating the structural, chemical, and optical properties at nanometer resolution. Journal of Applied Physics, 2010, 107, 013501.	1.1	9
236	Charge-ordered spinel AlV2O4: High-energy-resolution EELS and computational studies. Physical Review B, 2012, 85, .	1.1	9
237	Plasmon energy from strained GaN quantum wells. Applied Physics Letters, 2013, 103, 021901.	1.5	9
238	Influence of TEM specimen preparation on chemical composition of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Micron, 2014, 62, 37-42.	1.1	9
239	Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography. Ultramicroscopy, 2016, 165, 8-14.	0.8	9
240	Magnetic Properties of Epitaxially Grown SrRuO ₃ Nanodots. Nano Letters, 2019, 19, 1131-1135.	4.5	9
241	Probing Charge Accumulation at SrMnO ₃ /SrTiO ₃ Heterointerfaces via Advanced Electron Microscopy and Spectroscopy. ACS Nano, 2020, 14, 12697-12707.	7.3	9
242	Optical conductivity and superconductivity in highly overdoped La $\langle sub \rangle 2\hat{a}^* \langle i \rangle \times \langle i \rangle \langle sub \rangle$ Ca $\langle sub \rangle \langle i \rangle \times \langle i \rangle \langle sub \rangle$ CuO $\langle sub \rangle \langle sub \rangle \langle sub \rangle$ thin films. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
243	ÂFabrication And Plasmonic Characterization Of Au Nanowires With Controlled Surface Morphology. Advanced Materials Letters, 2015, 6, 377-382.	0.3	9
244	Engineering ordered arrangements of oxygen vacancies at the surface of superconducting La2CuO4 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	9
245	EELS of YBa2Cu3O7â^'x in the TEM. A High Spatial Resolution Method for Analysing the Electronic Structure of High-Tc YBa2Cu3O7â^'x Thin Films. Physica Status Solidi A, 1991, 128, 129-137.	1.7	8
246	The Growth of One-Dimensional CuPcF ₁₆ Nanostructures on Gold Nanoparticles as Studied by Transmission Electron Microscopy Tomography. ACS Nano, 2012, 6, 4039-4044.	7. 3	8
247	Materials News: Interfacial chemistry and atomic arrangement of ZrO2 â^ La2/3Sr1/3MnO3 pillar-matrix structures. APL Materials, 2014, 2, .	2.2	8
248	Quantitative electron tomography of PLA/clay nanocomposites to understand the effect of the clays in the thermal stability. Journal of Applied Polymer Science, 2017, 134, .	1.3	8
249	STEM SI Warp: A Tool for Correcting the Linear and Nonlinear Distortions for Atomically Resolved STEM Spectrum and Diffraction Imaging. Microscopy and Microanalysis, 2018, 24, 132-133.	0.2	8
250	Structural optimization and amorphous calcium phosphate mineralization in sensory setae of a terrestrial crustacean (Isopoda: Oniscidea). Micron, 2018, 112, 26-34.	1.1	8
251	Strain-induced structural transition in DyBa2Cu3O7 \hat{a} °' <i>x</i> films grown by atomic layer-by-layer molecular beam epitaxy. Applied Physics Letters, 2020, 117, .	1.5	8
252	Atomic-Scale Tuning of the Charge Distribution by Strain Engineering in Oxide Heterostructures. ACS Nano, 2021, 15, 16228-16235.	7. 3	8

#	Article	IF	Citations
253	Electronic and vibrational signatures of ruthenium vacancies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml: .<="" 2019,="" 3,="" films.="" materials,="" physical="" review="" th="" thin=""><th>mn x29/mm</th><th>nl:n&n > </th></mml:></mml:msub></mml:mrow></mml:math>	mn x 29 /mm	nl:n&n >
254	Experimental Assessment of Structural Differences between Amorphous and Amorphized Matter. Chemistry of Materials, 2006, 18, 5351-5354.	3.2	7
255	Manifestation of incommensurate structural modulations in the Ti-L2,3electron energy-loss near-edge structure of Sr2TiSi2O8. Philosophical Magazine Letters, 2007, 87, 431-439.	0.5	7
256	Electron Magnetic Linear Dichroism (EMLD) and Electron Magnetic Circular Dichroism (EMCD) in Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2007, 13, 426-427.	0.2	7
257	Yttrium Aluminum Garnet as a Scavenger for Ca and Si. Journal of the American Ceramic Society, 2008, 91, 3663-3667.	1.9	7
258	Crossâ€6ectional Characterization of Electrodeposited, Monocrystalline Au Nanowires in Parallel Arrangement. Small, 2012, 8, 3396-3399.	5.2	7
259	Investigating hybridization schemes of coupled split-ring resonators by electron impacts. Optics Express, 2015, 23, 20721.	1.7	7
260	Strain-induced indium clustering in non-polar a-plane InGaN quantum wells. Acta Materialia, 2018, 145, 109-122.	3.8	7
261	Ruddlesden–Popper Faults in NdNiO3 Thin Films. Symmetry, 2022, 14, 464.	1.1	7
262	Pair breaking effects in heavy fermion superconductors. Physica C: Superconductivity and Its Applications, 1988, 153-155, 449-450.	0.6	6
263	Evidence for antiferromagnetism in Ce1â^'xLaxCu2.2Si2 below 10 K. Journal of Magnetism and Magnetic Materials, 1988, 76-77, 523-524.	1.0	6
264	Synthesis and characterization of N-rich single crystalline SiOxNy nanowires with three-dimensional branches. Applied Physics Letters, 2009, 94, 231903.	1.5	6
265	Spin-entropy induced thermopower and spin-blockade effect in CoO. Physical Review B, 2019, 100, .	1.1	6
266	2D Doping of Proton Conductors: BaZrO 3 â€Based Heterostructures. Advanced Energy Materials, 2021, 11, 2003267.	10.2	6
267	Control of the metal-insulator transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">NdNiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> thin films through the interplay between structural and electronic properties. Physical Review Materials, 2021,	0.9	6
268	A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy. Semiconductor Science and Technology, 2021, 36, 025011.	1.0	6
269	Crystal structure and cation distribution in Fe7SiO10 ("Iscorite"). European Journal of Mineralogy, 2005, 17, 723-731.	0.4	5
270	Titanium–silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy. Thin Solid Films, 2009, 517, 2048-2054.	0.8	5

#	Article	IF	Citations
271	Annealing effect on ion conduction of nanosized CaF2/BaF2 multilayers. Journal of Applied Physics, 2009, 105, 114321.	1.1	5
272	Transmission electron microscopy study of erbium silicide formation from Ti/Er stack for Schottky contact applications. Journal of Microscopy, 2010, 237, 379-383.	0.8	5
273	Step-Flow Growth of Bi ₂ Te ₃ Nanobelts. Crystal Growth and Design, 2016, 16, 6961-6966.	1.4	5
274	Strain and size combined effects on the GaN band structure: VEELS and DFT study. Physical Chemistry Chemical Physics, 2017, 19, 5430-5434.	1.3	5
275	Structure and chemistry of interfaces between ceria and yttria-stabilized zirconia studied by analytical STEM. Ultramicroscopy, 2018, 188, 90-100.	0.8	5
276	Secondary-Phase-Assisted Grain Boundary Migration in CulnSe2. Physical Review Letters, 2020, 124, 095702.	2.9	5
277	The Mechanical Consequences of the Interplay of Mineral Distribution and Organic Matrix Orientation in the Claws of the Sea Slater Ligia pallasii. Minerals (Basel, Switzerland), 2021, 11, 1373.	0.8	5
278	VEELS band gap measurements using monochromated electrons. Journal of Physics: Conference Series, 2008, 126, 012005.	0.3	4
279	Strain mapping for advanced CMOS technologies. Crystal Research and Technology, 2014, 49, 38-42.	0.6	4
280	Roughening of a stepped GaN grain boundary with increasing driving force for migration. Europhysics Letters, 2017, 120, 16002.	0.7	4
281	Improved sample preparation of beam-sensitive ultra-thin cuprate films. Microscopy and Microanalysis, 2019, 25, 686-687.	0.2	4
282	Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics, 2019, 6, 2509-2516.	3.2	4
283	Prospect for detecting magnetism of a single impurity atom using electron magnetic chiral dichroism. Physical Review B, 2019, 100, .	1.1	4
284	Tuning the resistive switching in tantalum oxide-based memristors by annealing. AIP Advances, 2020, 10,	0.6	4
285	Orbital engineering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>YVO</mml:mi><mml:mn>3O<mml:mn>3</mml:mn></mml:mn></mml:msub></mml:math> superlattices. Physical Review B. 2021. 104.	mn> <td>nl:ṃsub><mr< td=""></mr<></td>	nl:ṃsub> <mr< td=""></mr<>
286	Negatively Charged In-Plane and Out-Of-Plane Domain Walls with Oxygen-Vacancy Agglomerations in a Ca-Doped Bismuth-Ferrite Thin Film. ACS Applied Electronic Materials, 2021, 3, 4498-4508.	2.0	4
287	Characterization of Iron Valence State and Magnetic Linear Dichroism in Minerals by Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2003, 9, 320-321.	0.2	3
288	Internal strain formed in oxide ceramics upon spark-plasma sintering. Philosophical Magazine, 2007, 87, 4555-4566.	0.7	3

#	Article	IF	Citations
289	Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers. Journal of Microscopy, 2010, 237, 347-351.	0.8	3
290	Real-space Imaging of Plasmonic Modes of Gold Tapers by EFTEM and EELS. Microscopy and Microanalysis, 2015, 21, 2221-2222.	0.2	3
291	On the impact of indium distribution on the electronic properties in InGaN nanodisks. Applied Physics Letters, 2015, 106, 101910.	1.5	3
292	Linking Dopant Distribution and Interatomic Distortions at La 1.6 Mo.4CuO 4 /La2CuO4 Superconducting Interfaces. Microscopy and Microanalysis, 2016, 22, 308-309.	0.2	3
293	Inline electron holography and VEELS for the measurement of strain in ternary and quaternary (In,Al,Ga)N alloyed thin films and its effect on bandgap energy. Journal of Microscopy, 2016, 261, 27-35.	0.8	3
294	Phage-assisted assembly of organic–inorganic hybrid bilayers. International Journal of Materials Research, 2016, 107, 295-299.	0.1	3
295	Formation of Pt–Zn Alloy Nanoparticles by Electron-Beam Irradiation of Wurtzite ZnO in the TEM. Nanoscale Research Letters, 2016, 11, 339.	3.1	3
296	Controlled self-assembly of biomolecular rods on structured substrates. Soft Matter, 2016, 12, 3177-3183.	1.2	3
297	Correction to Step-Flow Growth of Bi ₂ Te ₃ Nanobelts. Crystal Growth and Design, 2017, 17, 1438-1438.	1.4	3
298	Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties. APL Materials, 2017, 5, .	2.2	3
299	Interface engineering of Cu(In,Ga)Se2and atomic layer deposited Zn(O,S) heterojunctions. Japanese Journal of Applied Physics, 2017, 56, 08MC16.	0.8	3
300	Direct Visualization and Image Simulations of Oxygen Sublattice Occupancy in Thin Cuprate Films. Microscopy and Microanalysis, 2018, 24, 76-77.	0.2	3
301	Combined imaging and analytical STEM of ultra-thin cuprate films. Microscopy and Microanalysis, 2019, 25, 1750-1751.	0.2	3
302	Improved uniformity and threshold voltage in NbOx-ZrO2 selectors. Applied Physics Letters, 2021, 119, .	1.5	3
303	TEM and HAADF STEM Imaging of Dislocation Loops in Irradiated GaAs. Acta Physica Polonica A, 2019, 136, 245-249.	0.2	3
304	Electrochemical Route to Large-Area Mono-Crystalline Gold Platelets for High-Quality Plasmonic Applications. , $2014, \ldots$		3
305	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie, 2022, 134, .	1.6	3
306	Mapping Grain Boundary Potentials by Inline Electron Holography. Microscopy and Microanalysis, 2007, 13, 334-335.	0.2	2

#	Article	IF	Citations
307	Transmission electron microscopy study of the platinum germanide formation process in the Ge/Pt/Ge/SiO2/Si structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 175-178.	1.7	2
308	Application of Monochromated Electrons in EELS. Microscopy and Microanalysis, 2008, 14, 134-135.	0.2	2
309	Effect of surface orientation on intrinsic island formation on SrTiO ₃ surfaces. Journal of Physics: Conference Series, 2008, 94, 012013.	0.3	2
310	Thickness dependent microstructural changes in La0.5Ca0.5MnO3 thin films deposited on (111) SrTiO3. Thin Solid Films, 2010, 518, 4667-4669.	0.8	2
311	3D Elemental Mapping in Nanomaterials by Core-Loss EFTEM Tomography. Microscopy and Microanalysis, 2010, 16, 1842-1843.	0.2	2
312	Characterization of Dentine, Dentinal Tubules and Dentine-Enamel Junction in Human Teeth by Advanced Analytical TEM. Microscopy and Microanalysis, 2011, 17, 286-287.	0.2	2
313	The Railway Metropolis. , 2016, , 1-17.		2
314	Electron-Beam-Induced Antiphase Boundary Reconstructions in a ZrO ₂ -LSMO Pillar-Matrix System. ACS Applied Materials & System. ACS Applied Materials	4.0	2
315	Polyphosphate-accumulating bacterial community colonizing the calcium bodies of terrestrial isopod crustaceans Titanethes albus and Hyloniscus riparius. FEMS Microbiology Ecology, 2017, 93, .	1.3	2
316	STEM SI Warp: a Digital Micrograph script tool for warping the image distortions of atomically resolved spectrum image. Microscopy and Microanalysis, 2017, 23, 408-409.	0.2	2
317	Metal Fluoride–Lithium Batteries: 3D Honeycomb Architecture Enables a Highâ€Rate and Longâ€Life Iron (III) Fluoride–Lithium Battery (Adv. Mater. 43/2019). Advanced Materials, 2019, 31, 1970304.	11.1	2
318	Optoelectronic Inactivity of Dislocations in Cu(In,Ga)Se ₂ Thin Films. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100042.	1.2	2
319	Software Precession Electron Diffraction. , 2008, , 201-202.		2
320	Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190599.	1.6	2
321	Soft x-ray absorption study of R2Cu04-x. Physica B: Condensed Matter, 1990, 165-166, 1265-1266.	1.3	1
322	Time-frequency vector quantization with application to isolated world recognition. , 0, , .		1
323	Extended energyâ€loss fine structure spectroscopy of structural modifications in Nd 2 CuO 4â^δat the oxygen K edge. Journal of Microscopy, 1996, 183, 9-17.	0.8	1
324	Chemical bonds in damaged and pristine low- \hat{l}° materials: A comparative EELS study. Microelectronic Engineering, 2008, 85, 2169-2171.	1.1	1

#	Article	IF	CITATIONS
325	New Ceramic Phases in the Ternary Si-C-N System. Key Engineering Materials, 0, 403, 147-148.	0.4	1
326	Nanostructure Characterization of Conical Silicon Carbide Nanowires and Heterostructures Induced by Release Catalysis. Microscopy and Microanalysis, 2009, 15, 1546-1547.	0.2	1
327	Low-loss EFTEM Imaging of Surface Plasmon Resonances in Ag Nanostructures. Microscopy and Microanalysis, 2010, 16, 1438-1439.	0.2	1
328	ELNES Investigations of Interfaces in Abalone Shell. Microscopy and Microanalysis, 2010, 16, 1218-1219.	0.2	1
329	EELS and EFTEM of Surface Plasmons in Metallic Nanostructures. Microscopy and Microanalysis, 2011, 17, 762-763.	0.2	1
330	Quantitative determination of compositional profiles using HAADF image simulations. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 284-288.	0.8	1
331	Manganese Segregation at Antiphase Boundaries Connecting ZrO2 Pillars in ZrOi-Lai/sSri/sMnOs Pillar-Matrix Structures. Microscopy and Microanalysis, 2015, 21, 2067-2068.	0.2	1
332	Compositional and engineering adaptations in dentine explored by analytical STEM. Microscopy and Microanalysis, 2018, 24, 1274-1275.	0.2	1
333	Atomically Resolved EELS Elemental and Fine Structure Mapping via Multi-Frame and Energy-Offset Correction Acquisition. Microscopy and Microanalysis, 2018, 24, 448-449.	0.2	1
334	EDGE 2017 – Enhanced Data Generated by Electrons, Okinawa, May 2017. Microscopy (Oxford, England), 2018, 67, i1-i2.	0.7	1
335	Probing Jahn-Teller Distortions at Superconducting La2CuO4 Interfaces. Microscopy and Microanalysis, 2018, 24, 78-79.	0.2	1
336	Initial nucleation of amorphous Si–B–C–N ceramics derived from polymer-precursors. Journal of Materials Science and Technology, 2019, 35, 2851-2858.	5.6	1
337	Toroidal Moments Probed by Electron Beams. Journal of Physics: Conference Series, 2020, 1461, 012174.	0.3	1
338	Respirometric Evaluation of Toxicity of 2,4-Dichlorophenol Towards Activated Sludge and the Ability of Biomass Acclimation. Lecture Notes in Civil Engineering, 2017, , 60-67.	0.3	1
339	Low-loss-energy EFTEM imaging of triangular silver nanoparticles. , 2008, , 243-244.		1
340	Oxygen Vacancies in Perovskite and Related Structures: Implications for the Lower Mantle. Materials Research Society Symposia Proceedings, 2002, 718, 1.	0.1	1
341	Coupling of electronic and structural degrees of freedom in vanadate superlattices. Physical Review B, 2022, 105, .	1.1	1
342	In honour of the 60th birthday of Wolfgang Friedrich MÃ $\frac{1}{4}$ ller. European Journal of Mineralogy, 2001, 13, 219-220.	0.4	0

#	Article	IF	CITATIONS
343	Magnetic Linear Dichroism in Electron Energy-Loss Spectra of alpha-Fe2O3. Microscopy and Microanalysis, 2004, 10, 88-89.	0.2	O
344	Silicon Carbide Nanowire Heterostructures Constructed from Released Iron Catalysis. Materials Research Society Symposia Proceedings, 2007, 1058, 1.	0.1	0
345	Low-loss EELS with Monochromated Electrons. Microscopy and Microanalysis, 2007, 13, 54-55.	0.2	0
346	Strain Mapping of 45 nm MOSFET by Dark-Field Inline Electron Holography. Microscopy and Microanalysis, 2010, 16, 592-593.	0.2	0
347	Characterization of ytterbium silicide formed in ultra high vacuum. Journal of Physics: Conference Series, 2010, 209, 012056.	0.3	0
348	Low-Dose Strain Mapping by Dark-Field Inline Electron Holography. Microscopy and Microanalysis, 2011, 17, 1228-1229.	0.2	0
349	The Stuttgart Center for Electron Microscopy at the Max Planck Institute for Metals Research. International Journal of Materials Research, 2011, 102, 815-827.	0.1	0
350	Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible Detected by EFTEM and 3D-FDTD Simulations. Microscopy and Microanalysis, 2013, 19, 1932-1933.	0.2	0
351	Spectroscopy of optical modes with high spatial, temporal and energy resolution using electron-photon interference effects: A numerical study. , 2013, , .		0
352	Recent TEM developments applied to quantum structures. MATEC Web of Conferences, 2013, 5, 02001.	0.1	0
353	Analytical TEM Study of the Microstructure of LaNiO3/LaAlO3 Superlattices. Microscopy and Microanalysis, 2013, 19, 1888-1889.	0.2	0
354	Linkage Between Microstructure and Chemical Composition of Iron-Rich Hard Dental Tissues from the Feral Coypu by Analytical TEM Investigations. Microscopy and Microanalysis, 2013, 19, 188-189.	0.2	0
355	Electron impact investigation of hybridization scheme in coupled split-ring resonators. , 2014, , .		0
356	Hybridization of Off-Axis and In-line High-Resolution Electron Holography. Microscopy and Microanalysis, 2014, 20, 272-273.	0.2	0
357	Atomic-Scale STEM-EELS Characterization of the Chemistry of Structural Defects and Interfaces in Energy-Related Materials. Microscopy and Microanalysis, 2014, 20, 562-563.	0.2	0
358	Plasmons of Hexamer and Pentamer Nanocavities Probed with Swift Electrons. Microscopy and Microanalysis, 2014, 20, 580-581.	0.2	0
359	Surprising high iron enrichment in hard dental tissues of rodents. Microscopy and Microanalysis, 2015, 21, 2289-2290.	0.2	0
360	Hybrid Calcium Phosphate Neuron-Like Structures under the Microscope. Microscopy and Microanalysis, 2015, 21, 1539-1540.	0.2	0

#	Article	IF	CITATIONS
361	Direct mapping of strain state in nonpolar InGaN/GaN multilayers using dark-field inline electron holography. , 2015, , .		O
362	Oxygen Octahedral Picker: A Digital Micrograph Script Tool for Extracting Quantitative Information From HAADF and ABF Images. Microscopy and Microanalysis, 2016, 22, 930-931.	0.2	0
363	Plasmons in Mesoscopic Gold Tapers. Microscopy and Microanalysis, 2016, 22, 294-295.	0.2	0
364	Structural Anisotropy in a Crustacean Claw Calcified with Amorphous Calcium Phosphate. Microscopy and Microanalysis, 2016, 22, 1868-1869.	0.2	0
365	Advances in Momentum-Resolved Dispersion Investigations via Monochromated Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 978-979.	0.2	0
366	High Resolution STEM Study of Dy-doped Bi 2 Te 3 Thin Films. Microscopy and Microanalysis, 2016, 22, 1516-1517.	0.2	0
367	Electron-Beam-Induced Antiphase Boundary Reconstructions in ZrO2- La2/3Sr1/3MnO3 Pillar- Matrix Structures. Microscopy and Microanalysis, 2016, 22, 1824-1825.	0.2	0
368	Effect of Sludge Retention Time on the Efficiency of Excess Sludge Reduction by Ultrasonic Disintegration. Lecture Notes in Civil Engineering, 2017, , 131-137.	0.3	0
369	Influence of Substrate Temperature and Dopant Distribution at Two-Dimensionally Doped Superconducting La2CuO4 Interfaces. Microscopy and Microanalysis, 2017, 23, 1570-1571.	0.2	0
370	Synthesis of Superconductor-Topological Insulator Hybrid Nanoribbon Structures. Nano, 2017, 12, 1750095.	0.5	0
371	Measuring the Cation and Oxygen Atomic Column Displacement at Picometer Precision. Microscopy and Microanalysis, 2017, 23, 1612-1613.	0.2	0
372	Magnesium-Supported Continuous Growth of Rodents' Incisors. Microscopy and Microanalysis, 2017, 23, 1320-1321.	0.2	0
373	Biomimetic Synthesis of Ceramic Composites. Microscopy and Microanalysis, 2017, 23, 1390-1391.	0.2	0
374	Exposing Advanced Building Strategies of Strongly Iron-Enriched Incisors. Microscopy and Microanalysis, 2017, 23, 1848-1849.	0.2	0
375	Interaction between Relativistic Electrons and Mesoscopic Plasmonic Tapers. Microscopy and Microanalysis, 2017, 23, 1534-1535.	0.2	0
376	Bio-templated Multilayered Organic-Inorganic Composites Investigated by Analytical STEM. Microscopy and Microanalysis, 2018, 24, 1326-1327.	0.2	0
377	Analytical STEM of Amorphous and Crystalline Mineral Phases in Calcium Bodies of Terrestrial Crustaceans. Microscopy and Microanalysis, 2018, 24, 1344-1345.	0.2	0
378	Orientation of Organic Fibers and the Presence of Amorphous Calcium Phosphate in Elongated Crustacean Skeletal Elements. Microscopy and Microanalysis, 2019, 25, 1106-1107.	0.2	0

#	Article	IF	CITATIONS
379	Electron-Driven Photon Sources for Spectral Interferometry using Electron Microscopes., 2019,,.		O
380	TEM Sample Preparation of Patterned Quantum Dots. Microscopy and Microanalysis, 2019, 25, 790-791.	0.2	0
381	High-resolution Analytical STEM of Defects and Interfaces in Beam-sensitive Ultra-thin Cuprate Films. Microscopy and Microanalysis, 2020, 26, 2972-2973.	0.2	0
382	Atomic-scale Identification of High-temperature Superconductivity at La2CuO4 Interfaces. Microscopy and Microanalysis, 2020, 26, 738-739.	0.2	0
383	Atomic-scale Considerations on LaNiO3-La2CuO4 Heterostructures: Interface—thermoelectricity Relationship. Microscopy and Microanalysis, 2020, 26, 2626-2627.	0.2	0
384	Analysis of Mineralized Matrices in Calcium Bodies with and Without Bacteria in Two Species of Terrestrial Crustaceans. Microscopy and Microanalysis, 2020, 26, 2746-2747.	0.2	0
385	Structural, Electronic and Magnetic Properties of a Few Nanometer-Thick Superconducting NdBa2Cu3O7 Films. Nanomaterials, 2020, 10, 817.	1.9	0
386	Strong Exciton-Photon Interactions in the van der Waals Materials Probed by Electron Beams. , 2021, , .		0
387	Interplay between structural and electronic properties with the metal-insulator transition in NdNiO3 thin films. Microscopy and Microanalysis, 2021, 27, 144-145.	0.2	0
388	How sharp are atomically sharp high-Tc La2CuO4 interfaces?. Microscopy and Microanalysis, 2021, 27, 700-701.	0.2	0
389	Ion transport in nanocrystalline CaF2 films. Journal of Applied Physics, 2021, 130, 105301.	1.1	0
390	Coexisting commensurate and incommensurate charge ordered phases in CoO. Scientific Reports, 2021, 11, 19415.	1.6	0
391	Studying nanocrystallization behaviour of different inorganic glasses using Transmission Electron Microscopy., 2008,, 523-524.		0
392	Determination of precise orientation relationships between surface precipitates and matrix in a duplex stainless steel., 2008,, 659-660.		0
393	Amorphisation in fresnoite compounds — a combined ELNES and XANES study. , 2008, , 821-822.		0
394	Study of the intermixing of Fe-Pt multilayers by analytical and high-resolution transmission electron microscopy. , 2008, , 109-110.		0
395	Band gap mapping using monochromated electrons. , 2008, , 381-382.		0
396	Quantitative local strain analysis of Si/SiGe heterostructures using HRTEM., 2008, , 141-142.		0

#	ARTICLE	IF	CITATIONS
397	Direct observation of surface oxidation of Rh nanoparticles on (001) MgO., 2008,, 225-226.		0
398	Nonlinear Electron Inline Holography. , 2008, , 263-264.		0
399	Preparation of SiC/SiC thin foils for TEM observations by wedge polishing method. , 2008, , 817-818.		0
400	Complex Magnetic Order in Nickelate Slabs. Springer Theses, 2017, , 109-144.	0.0	0