Kasper Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086050/publications.pdf

Version: 2024-02-01

65 papers 3,060 citations

30 h-index 54 g-index

72 all docs 72 docs citations

times ranked

72

4321 citing authors

#	Article	IF	CITATIONS
1	Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology and Evolution, 2015, 30, 190-198.	8.7	354
2	Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment, 2007, 110, 29-44.	11.0	189
3	Current Practices in UAS-based Environmental Monitoring. Remote Sensing, 2020, 12, 1001.	4.0	135
4	Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets. Remote Sensing, 2015, 7, 4753-4783.	4.0	129
5	Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Index-then-Blend―and "Blend-then-Index―Approaches. Remote Sensing, 2014, 6, 9213-9238.	4.0	118
6	Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. Journal of Hydrology, 2013, 505, 78-90.	5.4	97
7	Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects. Remote Sensing, 2018, 10, 854.	4.0	93
8	Mapping Structural Parameters and Species Composition of Riparian Vegetation Using IKONOS and Landsat ETM+ Data in Australian Tropical Savannahs. Photogrammetric Engineering and Remote Sensing, 2006, 72, 71-80.	0.6	92
9	Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sensing Applications: Society and Environment, 2015, 1, 36-49.	1.5	90
10	Comparison of Geo-Object Based and Pixel-Based Change Detection of Riparian Environments using High Spatial Resolution Multi-Spectral Imagery. Photogrammetric Engineering and Remote Sensing, 2010, 76, 123-136.	0.6	79
11	Integration of LiDAR and QuickBird imagery for mapping riparian biophysical parameters and land cover types in Australian tropical savannas. Forest Ecology and Management, 2010, 259, 598-606.	3.2	79
12	A new source for high spatial resolution night time images $\hat{a} \in \text{``The EROS-B commercial satellite. Remote Sensing of Environment, 2014, 149, 1-12.}$	11.0	76
13	The relationship of spatial–temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean and Coastal Management, 2013, 76, 12-22.	4.4	72
14	Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: Assessing accuracy and costs. Remote Sensing of Environment, 2010, 114, 2679-2691.	11.0	69
15	Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 83-96.	11.1	68
16	Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sensing of Environment, 2016, 176, 242-254.	11.0	66
17	Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis. Ecological Indicators, 2010, 10, 796-807.	6.3	59
18	Assessing Radiometric Correction Approaches for Multi-Spectral UAS Imagery for Horticultural Applications. Remote Sensing, 2018, 10, 1684.	4.0	56

#	Article	IF	CITATIONS
19	Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Frontiers in Artificial Intelligence, 2020, 3, 28.	3.4	55
20	Measuring Canopy Structure and Condition Using Multi-Spectral UAS Imagery in a Horticultural Environment. Remote Sensing, 2019, 11, 269.	4.0	54
21	Where does all the water go? Partitioning water transmission losses in a data-sparse, multi-channel and low-gradient dryland river system using modelling and remote sensing. Journal of Hydrology, 2015, 529, 1511-1529.	5.4	51
22	What is the Value of a Good Map? An Example Using High Spatial Resolution Imagery to Aid Riparian Restoration. Ecosystems, 2007, 10, 688-702.	3.4	48
23	A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. International Journal of Remote Sensing, 2017, 38, 679-705.	2.9	47
24	Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. Frontiers in Plant Science, 2019, 10, 370.	3.6	47
25	A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments. Sensors, 2020, 20, 3316.	3.8	47
26	Characterizing the Spatial Structure of Mangrove Features for Optimizing Image-Based Mangrove Mapping. Remote Sensing, 2014, 6, 984-1006.	4.0	43
27	Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. Journal of Cleaner Production, 2019, 209, 819-833.	9.3	39
28	Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165, 28-40.	11.1	39
29	Automatic Geographic Object Based Mapping of Streambed and Riparian Zone Extent from LiDAR Data in a Temperate Rural Urban Environment, Australia. Remote Sensing, 2011, 3, 1139-1156.	4.0	38
30	Comparison of image and rapid field assessments of riparian zone condition in Australian tropical savannas. Forest Ecology and Management, 2007, 240, 42-60.	3.2	35
31	Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping. Science of the Total Environment, 2018, 622-623, 57-70.	8.0	32
32	Linking riparian vegetation spatial structure in Australian tropical savannas to ecosystem health indicators: semi-variogram analysis of high spatial resolution satellite imagery. Canadian Journal of Remote Sensing, 2006, 32, 228-243.	2.4	30
33	Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space. Urban Ecosystems, 2016, 19, 1749-1765.	2.4	29
34	Habitat maps to enhance monitoring and management of the Great Barrier Reef. Coral Reefs, 2020, 39, 1039-1054.	2.2	29
35	Mapping Banana Plantations from Object-oriented Classification of SPOT-5 Imagery. Photogrammetric Engineering and Remote Sensing, 2009, 75, 1069-1081.	0.6	27
36	Radiometric Assessment of a UAV-Based Push-Broom Hyperspectral Camera. Sensors, 2019, 19, 4699.	3.8	27

#	Article	IF	CITATIONS
37	Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102091.	2.8	27
38	Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach. Precision Agriculture, 2022, 23, 961-983.	6.0	27
39	Mapping Banana Plants from High Spatial Resolution Orthophotos to Facilitate Plant Health Assessment. Remote Sensing, 2014, 6, 8261-8286.	4.0	26
40	Estimating Changes in Leaf Area, Leaf Area Density, and Vertical Leaf Area Profile for Mango, Avocado, and Macadamia Tree Crowns Using Terrestrial Laser Scanning. Remote Sensing, 2018, 10, 1750.	4.0	26
41	Multi-sensor and multi-platform consistency and interoperability between UAV, Planet CubeSat, Sentinel-2, and Landsat reflectance data. GIScience and Remote Sensing, 2022, 59, 936-958.	5.9	26
42	Quinoa Phenotyping Methodologies: An International Consensus. Plants, 2021, 10, 1759.	3.5	24
43	Object-based classification of semi-arid vegetation to support mine rehabilitation and monitoring. Journal of Applied Remote Sensing, 2014, 8, 083564.	1.3	22
44	Landscape structure influences urban vegetation vertical structure. Journal of Applied Ecology, 2016, 53, 1477-1488.	4.0	19
45	Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach. Hydrology and Earth System Sciences, 2020, 24, 5251-5277.	4.9	19
46	Suitability of Airborne and Terrestrial Laser Scanning for Mapping Tree Crop Structural Metrics for Improved Orchard Management. Remote Sensing, 2020, 12, 1647.	4.0	18
47	Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery. Remote Sensing, 2021, 13, 2123.	4.0	17
48	Using GeoEye-1 Imagery for Multi-Temporal Object-Based Detection of Canegrub Damage in Sugarcane Fields in Queensland, Australia. GIScience and Remote Sensing, 2018, 55, 285-305.	5.9	16
49	Combining Nadir, Oblique, and Façade Imagery Enhances Reconstruction of Rock Formations Using Unmanned Aerial Vehicles. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 9987-9999.	6.3	16
50	Detecting Plant Stress Using Thermal and Optical Imagery From an Unoccupied Aerial Vehicle. Frontiers in Plant Science, 2021, 12, 734944.	3.6	14
51	Assessing stream bank condition using airborne LiDAR and high spatial resolution image data in temperate semirural areas in Victoria, Australia. Journal of Applied Remote Sensing, 2013, 7, 073492.	1.3	13
52	A machine learning approach for identifying and delineating agricultural fields and their multi-temporal dynamics using three decades of Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186, 83-101.	11.1	12
53	Center pivot field delineation and mapping: A satellite-driven object-based image analysis approach for national scale accounting. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 1-19.	11.1	11
54	PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W13, 407-411.	0.2	10

#	Article	IF	CITATIONS
55	Dye tracing and concentration mapping in coastal waters using unmanned aerial vehicles. Scientific Reports, 2022, 12, 1141.	3.3	10
56	Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series. Remote Sensing, 2022, 14, 1205.	4.0	9
57	Overcoming the Challenges of Thermal Infrared Orthomosaics Using a Swath-Based Approach to Correct for Dynamic Temperature and Wind Effects. Remote Sensing, 2021, 13, 3255.	4.0	7
58	Landscape Fragmentation and Ecosystem Services: A Reply to Andrieu et al Trends in Ecology and Evolution, 2015, 30, 634-635.	8.7	6
59	Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery. Water Research, 2022, 219, 118531.	11.3	4
60	Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA). , 2017, , .		3
61	Assessment of mangrove spatial structure using high-spatial resolution image data., 2013,,.		2
62	Estimation of mangrove leaf area index from ALOS AVNIR-2 data (A comparison of tropical and) Tj ETQq0 0 0 rg	BT /Oyerlo	ck 10 Tf 50 46
63	Time-series analysis of rainforest clearing in Sabah, Borneo using Landsat imagery. , 2011, , .		1
64	Exploring the use of synthetic aperture radar data for irrigation management in super high-density olive orchards. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102878.	1.9	1
65	New Tools for Monitoring World Heritage Values. , 2009, , 591-609.		0