Joana Amaral Paulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8085677/publications.pdf Version: 2024-02-01

	430754	414303
1,067	18	32
citations	h-index	g-index
32	32	1428
docs citations	times ranked	citing authors
		1,06718citationsh-index3232

#	Article	IF	CITATIONS
1	Quantile regression for modelling the impact of climate in cork growth quantiles in Portugal. European Journal of Forest Research, 2021, 140, 991-1004.	1.1	3
2	Quassia amara L. diameter and total height under different light conditions: implications for the management of agroecosystems. Agroforestry Systems, 2020, 94, 761-778.	0.9	2
3	Inter-tree competition analysis in undebarked cork oak plantations as a support tool for management in Portugal. New Forests, 2020, 51, 489-505.	0.7	4
4	Challenges and innovations for improving the sustainability of European agroforestry systems of high nature and cultural value: stakeholder perspectives. Sustainability Science, 2020, 15, 1301-1315.	2.5	20
5	Harmonisation of stem volume estimates in European National Forest Inventories. Annals of Forest Science, 2019, 76, 1.	0.8	34
6	Long-Term Monitoring of Cork and Holm Oak Stands Productivity in Portugal with Landsat Imagery. Remote Sensing, 2019, 11, 525.	1.8	18
7	Drivers for Annual Cork Growth under Two Understory Management Alternatives on a Podzolic Cork Oak Stand. Forests, 2019, 10, 133.	0.9	8
8	Modelling tree density effects on provisioning ecosystem services in Europe. Agroforestry Systems, 2019, 93, 1985-2007.	0.9	11
9	Farmers' reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe. Agroforestry Systems, 2018, 92, 811-828.	0.9	61
10	Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agroforestry Systems, 2018, 92, 877-891.	0.9	115
11	How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems, 2018, 92, 829-848.	0.9	64
12	Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agroforestry Systems, 2018, 92, 1047-1057.	0.9	18
13	Evaluating the carbon footprint of the cork sector with a dynamic approach including biogenic carbon flows. International Journal of Life Cycle Assessment, 2018, 23, 1448-1459.	2.2	18
14	Understory effect on tree and cork growth in cork oak woodlands. Forest Systems, 2018, 27, e02S.	0.1	10
15	Analysis of variables influencing tree cork caliper in two consecutive cork extractions using cork growth index modelling. Agroforestry Systems, 2017, 91, 221-237.	0.9	17
16	Environmental performance of expanded cork slab and granules through life cycle assessment. Journal of Cleaner Production, 2017, 145, 294-302.	4.6	25
17	Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems and Environment, 2017, 241, 121-132.	2.5	148
18	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	2.2	142

JOANA AMARAL PAULO

#	Article	IF	CITATIONS
19	Does debarking intensity during the first cork extraction affect future cork thickness?. Annals of Forest Science, 2017, 74, 1.	0.8	8
20	Carbon Sequestration in Mediterranean Oak Forests. Managing Forest Ecosystems, 2017, , 403-427.	0.4	6
21	Using the SUBER model for assessing the impact of cork debarking rotation on equivalent annual annuity in Portuguese stands. Forest Systems, 2017, 26, e008.	0.1	6
22	A carbon footprint simulation model for the cork oak sector. Science of the Total Environment, 2016, 566-567, 499-511.	3.9	22
23	Estimation of stand crown cover using a generalized crown diameter model: application for the analysis of Portuguese cork oak stands stocking evolution. IForest, 2016, 9, 437-444.	0.5	14
24	Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Regional Environmental Change, 2015, 15, 1569-1580.	1.4	30
25	Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New Forests, 2015, 46, 293-307.	0.7	48
26	Carbon sequestration of modern Quercus suber L. silvoarable agroforestry systems in Portugal: a YieldSAFE-based estimation. Agroforestry Systems, 2014, 88, 791-801.	0.9	24
27	Perceptions of forest experts on climate change and fire management in European Mediterranean forests. IForest, 2014, 7, 33-41.	0.5	37
28	Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. Forest Policy and Economics, 2012, 17, 59-68.	1.5	22
29	Resource communication. slMfLOR – platform for portuguese forest simulators. Forest Systems, 2012, 21, 543.	0.1	13
30	Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 2011, 68, 295-309.	0.8	50
31	Predicting mature cork biomass with t years of growth from one measurement taken at any other age. Forest Ecology and Management, 2010, 259, 1993-2005.	1.4	24
32	Age-independent difference equations for modelling tree and stand growth. Canadian Journal of Forest Research, 2006, 36, 1621-1630.	0.8	45