Hualin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8085668/publications.pdf

Version: 2024-02-01

393982 500791 39 952 19 28 h-index citations g-index papers 41 41 41 763 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants, 2022, 11, 303.	2.2	10
2	Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochemical Pharmacology, 2022, 198, 114954.	2.0	38
3	SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants, 2022, 11, 66.	2.2	18
4	An analysis of lncRNA-miRNA-mRNA networks to investigate the effects of HDAC4 inhibition on skeletal muscle atrophy caused by peripheral nerve injury. Annals of Translational Medicine, 2022, 10, 516-516.	0.7	3
5	Alternative splicing transitions associate with emerging atrophy phenotype during denervationâ€induced skeletal muscle atrophy. Journal of Cellular Physiology, 2021, 236, 4496-4514.	2.0	11
6	Transcriptome sequencing and analysis reveals the molecular mechanism of skeletal muscle atrophy induced by denervation. Annals of Translational Medicine, 2021, 9, 697-697.	0.7	2
7	Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. Annals of Translational Medicine, 2021, 9, 643-643.	0.7	6
8	Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants, 2021, 10, 1012.	2.2	34
9	HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation. Frontiers in Cellular Neuroscience, 2021, 15, 663384.	1.8	18
10	Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Frontiers in Immunology, 2021, 12, 730070.	2.2	11
11	Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Frontiers in Physiology, 2020, 11, 988.	1.3	42
12	Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC- $1\hat{l}\pm$ axis and STAT3 signaling. Annals of Translational Medicine, 2020, 8, 1524-1524.	0.7	23
13	Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Annals of Translational Medicine, 2020, 8, 1681-1681.	0.7	54
14	RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. Annals of Translational Medicine, 2020, 8, 1595-1595.	0.7	16
15	Salidroside Attenuates Denervation-Induced Skeletal Muscle Atrophy Through Negative Regulation of Pro-inflammatory Cytokine. Frontiers in Physiology, 2019, 10, 665.	1.3	37
16	Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Frontiers in Pharmacology, 2019, 10, 997.	1.6	40
17	Microarray Analysis of Gene Expression Provides New Insights Into Denervation-Induced Skeletal Muscle Atrophy. Frontiers in Physiology, 2019, 10, 1298.	1.3	61
18	PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Annals of Translational Medicine, 2019, 7, 440-440.	0.7	43

#	Article	IF	Citations
19	miR-125b-5p targeting TRAF6 relieves skeletal muscle atrophy induced by fasting or denervation. Annals of Translational Medicine, 2019, 7, 456-456.	0.7	35
20	Achyranthes bidentata polypeptide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. Annals of Translational Medicine, 2019, 7, 575-575.	0.7	15
21	Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. Annals of Translational Medicine, 2019, 7, 680-680.	0.7	37
22	Genetic changes in rat proximal nerve stumps after sciatic nerve transection. Annals of Translational Medicine, 2019, 7, 763-763.	0.7	5
23	Pyrroloquinoline quinone attenuates cachexia-induced muscle atrophy via suppression of reactive oxygen species. Journal of Thoracic Disease, 2018, 10, 2752-2759.	0.6	23
24	MicroRNA351 targeting TRAF6 alleviates dexamethasone-induced myotube atrophy. Journal of Thoracic Disease, 2018, 10, 6238-6246.	0.6	10
25	Mechanistic Role of Reactive Oxygen Species and Therapeutic Potential of Antioxidants in Denervation- or Fasting-Induced Skeletal Muscle Atrophy. Frontiers in Physiology, 2018, 9, 215.	1.3	74
26	MicroRNA-351 inhibits denervation-induced muscle atrophy by targeting TRAF6. Experimental and Therapeutic Medicine, 2016, 12, 4029-4034.	0.8	31
27	TRAF6 Inhibition Rescues Dexamethasone-Induced Muscle Atrophy. International Journal of Molecular Sciences, 2014, 15, 11126-11141.	1.8	45
28	Basic Fibroblast Growth Factor (bFGF) Facilitates Differentiation of Adult Dorsal Root Ganglia-Derived Neural Stem Cells Toward Schwann Cells by Binding to FGFR-1 Through MAPK/ERK Activation. Journal of Molecular Neuroscience, 2014, 52, 538-551.	1.1	19
29	Proteomic and bioinformatic analysis of differentially expressed proteins in denervated skeletal muscle. International Journal of Molecular Medicine, 2014, 33, 1586-1596.	1.8	29
30	iTRAQ-coupled 2D LC–MS/MS analysis on differentially expressed proteins in denervated tibialis anterior muscle of Rattus norvegicus. Molecular and Cellular Biochemistry, 2012, 364, 193-207.	1.4	30
31	Proteomic studies of rat tibialis anterior muscle during postnatal growth and development. Molecular and Cellular Biochemistry, 2009, 332, 161-171.	1.4	21
32	Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Science in China Series C: Life Sciences, 2009, 52, 267-277.	1.3	2
33	Investigation of differentially expressed proteins in rat gastrocnemius muscle during denervation–reinnervation. Journal of Muscle Research and Cell Motility, 2006, 27, 241-250.	0.9	41
34	The role of inflammatory factors in skeletal muscle injury. Biotarget, 0, 2, 7-7.	0.5	20
35	Strategies and potential therapeutic agents to counter skeletal muscle atrophy. Biotarget, 0, 2, 8-8.	0.5	8
36	The application of genome editing technology. Biotarget, 0, 3, 15-15.	0.5	1

Hualin Sun

#	Article	IF	CITATIONS
37	Effect of mammalian target of rapamycin signaling pathway on nerve regeneration. Biotarget, 0, 2, 18-18.	0.5	3
38	Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Frontiers in Physiology, 0, 13 , .	1.3	9
39	Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies. Frontiers in Endocrinology, 0, 13 , .	1.5	26