
Ginetta Collo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8085312/publications.pdf Version: 2024-02-01

CINETTA COLLO

#	Article	IF	CITATIONS
1	Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. Journal of Neuroscience, 1996, 16, 2495-2507.	1.7	859
2	Tissue distribution of the P2X7 receptor. Neuropharmacology, 1997, 36, 1277-1283.	2.0	467
3	The Permeabilizing ATP Receptor, P2X7. Journal of Biological Chemistry, 1997, 272, 5482-5486.	1.6	458
4	An antagonist-insensitive P2X receptor expressed in epithelia and brain EMBO Journal, 1996, 15, 55-62.	3.5	368
5	ATP-mediated cytotoxicity in microglial cells. Neuropharmacology, 1997, 36, 1295-1301.	2.0	269
6	P2X Receptors: An Emerging Channel Family. European Journal of Neuroscience, 1996, 8, 2221-2228.	1.2	253
7	Cell type-specific integrin variants with alternative alpha chain cytoplasmic domains Proceedings of the United States of America, 1991, 88, 10183-10187.	3.3	190
8	Spontaneous Cell Fusion in Macrophage Cultures Expressing High Levels of the P2Z/P2X7 Receptor. Journal of Cell Biology, 1997, 138, 697-706.	2.3	160
9	Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Molecular Psychiatry, 2018, 23, 812-823.	4.1	106
10	P2X1 receptor activation in HL60 cells. Blood, 1996, 87, 2659-2664.	0.6	80
11	Loss of Synaptic D1 Dopamine/N-Methyl-d-aspartate Glutamate Receptor Complexes in l-DOPA-Induced Dyskinesia in the Rat. Molecular Pharmacology, 2006, 69, 805-812.	1.0	75
12	Alphaâ€synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D ₂ /D ₃ receptor activation. Journal of Neurochemistry, 2008, 106, 560-577.	2.1	74
13	The NMDA/D1 Receptor Complex as a New Target in Drug Development. Current Topics in Medicinal Chemistry, 2006, 6, 801-808.	1.0	72
14	Distinct α7Aβ1 and α7Bβ1 integrin expression patterns during mouse development: α7A is restricted to skeletal muscle but α7B is expressed in striated muscle, vasculature, and nervous system. , 1996, 207, 355-371.		69
15	Redistribution of DAT/α-Synuclein Complexes Visualized by "In Situ―Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease. PLoS ONE, 2011, 6, e27959.	1.1	62
16	Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. Molecular Pharmacology, 2013, 83, 1176-1189.	1.0	61
17	Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine. Frontiers in Pharmacology, 2014, 5, 259.	1.6	52
18	Differential Onset of Expression of α7 and β1D Integrins During Mouse Heart and Skeletal Muscle Development. Cell Adhesion and Communication, 1998, 5, 193-205.	1.7	49

GINETTA COLLO

#	Article	IF	CITATIONS
19	Dopamine D3 receptorâ€preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signalâ€regulated kinase phosphorylation. European Journal of Neuroscience, 2008, 28, 1231-1240.	1.2	48
20	Dopamine D3 receptor ligands for drug addiction treatment. Progress in Brain Research, 2014, 211, 255-275.	0.9	47
21	Preâ€synaptic dopamine D ₃ receptor mediates cocaineâ€induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. Journal of Neurochemistry, 2012, 120, 765-778.	2.1	43
22	The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes. Journal of Receptor and Signal Transduction Research, 2010, 30, 347-354.	1.3	36
23	Pharmacological targeting of dopamine D3 receptors: Possible clinical applications of selective drugs. European Neuropsychopharmacology, 2015, 25, 1437-1447.	0.3	35
24	Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential. Scientific Reports, 2017, 7, 6036.	1.6	34
25	Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling. Neural Plasticity, 2018, 2018, 1-15.	1.0	31
26	Gradient of Integrin α6A Distribution in the Myocardium During Early Heart Development. Cell Adhesion and Communication, 1995, 3, 101-113.	1.7	30
27	(2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans. NeuroReport, 2018, 29, 1425-1430.	0.6	29
28	The tyrosine phosphatase Shpâ€⊋ interacts with the dopamine D ₁ receptor and triggers D ₁ â€mediated Erk signaling in striatal neurons. Journal of Neurochemistry, 2011, 117, 253-263.	2.1	25
29	Ketamine enhances structural plasticity in human dopaminergic neurons: possible relevance for treatment-resistant depression. Neural Regeneration Research, 2018, 13, 645.	1.6	22
30	Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632.	1.4	17
31	Pharmacology profile of F17464, a dopamine D3 receptor preferential antagonist. European Journal of Pharmacology, 2021, 890, 173635.	1.7	17
32	Ketamine increases the expression of GluR1 and GluR2 α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits in human dopaminergic neurons differentiated from induced pluripotent stem cells. NeuroReport, 2019, 30, 207-212.	0.6	15
33	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	2.0	14
34	Dopaminergic neuromodulation of prefrontal cortex activity requires the NMDA receptor coagonist <scp>d</scp> -serine. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
35	Genetic variation in CHRNA7 and CHRFAM7A is associated with nicotine dependence and response to varenicline treatment. European Journal of Human Genetics, 2018, 26, 1824-1831.	1.4	13
36	Blockade of Human P2X7 Receptor Function With a Monoclonal Antibody. Blood, 1998, 92, 3521-3528.	0.6	10

GINETTA COLLO

#	ARTICLE	IF	CITATIONS
37	Alpha6-Containing Nicotinic Acetylcholine Receptors Mediate Nicotine-Induced Structural Plasticity in Mouse and Human iPSC-Derived Dopaminergic Neurons. Frontiers in Pharmacology, 2018, 9, 572.	1.6	7
38	A human translational model based on neuroplasticity for pharmacological agents potentially effective in Treatment-Resistant Depression: focus on dopaminergic system. Neural Regeneration Research, 2020, 15, 1027.	1.6	7
39	Purinoceptors in the central nervous system. , 1996, 39, 361-370.		6
40	Ketamine effects on mammalian target of rapamycin signaling in the mouse limbic system depend on functional dopamine D3 receptors. NeuroReport, 2018, 29, 615-620.	0.6	5
41	Immature neuronal phenotype derived from mouse skin precursor cells differentiated in vitro. Brain Research, 2006, 1109, 32-36.	1.1	4
42	Distinctive Functions of $\hat{I}\pm 6\hat{I}^24$ and Other Integrins in Epithelial Cells. , 1994, , 141-161.		2
43	Structural Plasticity Induced by Ketamine in Human Dopaminergic Neurons as Mechanism Relevant for Treatment-Resistant Depression. Chronic Stress, 2019, 3, 247054701984254.	1.7	1
44	The Integrin Î \pm 6Î ² 4 in Epithelial and Carcinoma Cells. , 2017, , 177-196.		0
45	Involvement of DA D3 Receptors in Structural Neuroplasticity of Selected Limbic Brain Circuits: Possible Role in Treatment-Resistant Depression. Current Topics in Behavioral Neurosciences, 2022, , .	0.8	0
46	Synergic action of L-acetylcarnitine and L-methylfolate in Mouse Models of Stress-Related Disorders and Human iPSC-Derived Dopaminergic Neurons. Frontiers in Pharmacology, 0, 13, .	1.6	0