Kun-Han Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808508/publications.pdf Version: 2024-02-01

KIIN-HAN LIN

#	Article	IF	CITATIONS
1	Virtual Screening for Organic Solar Cells and Light Emitting Diodes. Advanced Science, 2022, 9, e2200825.	5.6	13
2	Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for Sunlight-Driven hydrogen production from water. Chemical Engineering Journal, 2022, 446, 137158.	6.6	48
3	Structure–Property Relationships in Bithiophenes with Hydrogenâ€Bonded Substituents. Chemistry - A European Journal, 2021, 27, 3348-3360.	1.7	5
4	Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Reports Physical Science, 2021, 2, 100332.	2.8	28
5	Is a Single Conformer Sufficient to Describe the Reorganization Energy of Amorphous Organic Transport Materials?. Journal of Physical Chemistry C, 2021, 125, 17355-17362.	1.5	6
6	Molecular library of OLED host materials—Evaluating the multiscale simulation workflow. Chemical Physics Reviews, 2021, 2, .	2.6	24
7	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102363.	10.2	38
8	Glass transition temperature prediction of disordered molecular solids. Npj Computational Materials, 2021, 7, .	3.5	11
9	Virtual Screening of TADF Emitters for Single-Layer OLEDs. Frontiers in Chemistry, 2021, 9, 800027.	1.8	7
10	Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 1792-1800.	6.6	39
11	Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers. Advanced Science, 2020, 7, 2001014.	5.6	43
12	FB-ECDA: Fragment-based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. Journal of Physical Chemistry A, 2020, 124, 10624-10634.	1.1	2
13	FB-REDA: fragment-based decomposition analysis of the reorganization energy for organic semiconductors. Physical Chemistry Chemical Physics, 2020, 22, 11881-11890.	1.3	10
14	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie, 2020, 132, 15013-15019.	1.6	9
15	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie - International Edition, 2020, 59, 14903-14909.	7.2	85
16	Getting the Right Twist: Influence of Donor–Acceptor Dihedral Angle on Exciton Kinetics and Singlet–Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 27778-27784.	1.5	40
17	Mechanisms of fluorescence quenching in prototypical aggregation-induced emission systems: excited state dynamics with TD-DFTB. Physical Chemistry Chemical Physics, 2019, 21, 9026-9035.	1.3	28
18	Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials. Chemistry of Materials, 2019, 31, 6605-6614.	3.2	21

Kun-Han Lin

#	Article	IF	CITATIONS
19	How does alkyl chain length modify the properties of triphenylamine-based hole transport materials?. Journal of Materials Chemistry C, 2018, 6, 960-965.	2.7	23
20	Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 37386-37395.	4.0	15
21	Read between the Molecules: Computational Insights into Organic Semiconductors. Journal of the American Chemical Society, 2018, 140, 16370-16386.	6.6	79
22	Lithiation mechanisms and lithium storage capacity of reduced graphene oxide nanoribbons: a first-principles study. Journal of Materials Chemistry A, 2017, 5, 4912-4922.	5.2	22
23	A Rising Star: Truxene as a Promising Hole Transport Material in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21729-21739.	1.5	32
24	Microstructure and properties of carbon–sulfur-containing chromium deposits electroplated in trivalent chromium baths with thiosalicylic acid. Electrochimica Acta, 2012, 72, 74-80.	2.6	31
25	Catalytic Hydrocracking of Synthetic Polymers into Grid-Compatible Gas Streams. SSRN Electronic Journal, 0, , .	0.4	0