Huizeng Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/808505/huizeng-li-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,906 378 114 70 h-index g-index citations papers 18,863 10.7 425 7.01 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
378	Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. <i>Advanced Materials</i> , 2009 , 21, 665-669	24	938
377	Applications of bio-inspired special wettable surfaces. <i>Advanced Materials</i> , 2011 , 23, 719-34	24	867
376	Controllable printing droplets for high-resolution patterns. <i>Advanced Materials</i> , 2014 , 26, 6950-8	24	300
375	Inkjet printing wearable electronic devices. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2971-2993	7.1	291
374	Colorful humidity sensitive photonic crystal hydrogel. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1116		287
373	Patterned Colloidal Photonic Crystals. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2544-2553	16.4	282
372	Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9274-9276	3.4	267
371	Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 9954-9957	3.4	263
370	Patterning of controllable surface wettability for printing techniques. <i>Chemical Society Reviews</i> , 2013 , 42, 5184-209	58.5	253
369	Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5791-5	16.4	226
368	Superhydrophobic surfaces cannot reduce ice adhesion. <i>Applied Physics Letters</i> , 2012 , 101, 111603	3.4	218
367	Simple Fabrication of Full Color Colloidal Crystal Films with Tough Mechanical Strength. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 596-604	2.6	204
366	Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17053-8	16.4	187
365	Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line. <i>Advanced Optical Materials</i> , 2014 , 2, 34-38	8.1	185
364	Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. <i>Soft Matter</i> , 2011 , 7, 3993	3.6	177
363	Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect. <i>Advanced Materials</i> , 2013 , 25, 6714-8	24	169
362	Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 28086-99	9.5	169

(2018-2006)

361	Highly Fluorescent Contrast for Rewritable Optical Storage Based on Photochromic Bisthienylethene-Bridged Naphthalimide Dimer. <i>Chemistry of Materials</i> , 2006 , 18, 235-237	9.6	168	
360	Phase Pure 2D Perovskite for High-Performance 2D-3D Heterostructured Perovskite Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1805323	24	161	
359	Superoleophobic Surfaces with Controllable Oil Adhesion and Their Application in Oil Transportation. <i>Advanced Functional Materials</i> , 2011 , 21, 4270-4276	15.6	157	
358	Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. <i>Nature Communications</i> , 2020 , 11, 521	17.4	157	
357	Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline. <i>Small</i> , 2015 , 11, 2738-42	11	149	
356	Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. <i>Soft Matter</i> , 2010 , 6, 2708	3.6	136	
355	Fabrication of Transparent Multilayer Circuits by Inkjet Printing. Advanced Materials, 2016, 28, 1420-6	24	135	
354	Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. <i>Soft Matter</i> , 2012 , 8, 6680	3.6	134	
353	Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016, 6, 24628	4.9	133	
352	Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal. <i>Energy and Environmental Science</i> , 2010 , 3, 1503	35.4	130	
351	Organic Functional Molecules towards Information Processing and High-Density Information Storage. <i>Advanced Materials</i> , 2008 , 20, 2888-2898	24	130	
350	Nanoparticle Based Curve Arrays for Multirecognition Flexible Electronics. <i>Advanced Materials</i> , 2016 , 28, 1369-74	24	129	
349	Janus effect of antifreeze proteins on ice nucleation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14739-14744	11.5	128	
348	Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 997-1001	16.4	126	
347	A multi-stopband photonic-crystal microchip for high-performance metal-ion recognition based on fluorescent detection. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7296-9	16.4	126	
346	Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. <i>Advanced Functional Materials</i> , 2015 , 25, 2237-2242	15.6	125	
345	Superoleophilic and Superhydrophobic Inverse Opals for Oil Sensors. <i>Advanced Functional Materials</i> , 2008 , 18, 3258-3264	15.6	109	
344	Printable Skin-Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. <i>Advanced Materials</i> , 2018 , 30, e1800291	24	108	

343	A Rainbow Structural-Color Chip for Multisaccharide Recognition. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6911-4	16.4	108
342	Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4265-9	16.4	108
341	A general printing approach for scalable growth of perovskite single-crystal films. <i>Science Advances</i> , 2018 , 4, eaat2390	14.3	101
340	Self-Healable Organogel Nanocomposite with Angle-Independent Structural Colors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10462-10466	16.4	99
339	Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. <i>Nano Today</i> , 2018 , 22, 132-144	17.9	99
338	A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6688-6692	16.4	98
337	Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. <i>Advanced Functional Materials</i> , 2010 , 20, 3561-3567	15.6	98
336	Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates. <i>Advanced Materials</i> , 2015 , 27, 3928-33	24	96
335	Photochromic sensors: a versatile approach for recognition and discrimination. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9265-9275	7.1	95
334	All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. <i>Nano Energy</i> , 2019 , 63, 103885	17.1	95
333	Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small, 2015, 11, 1649-	54 1	94
332	Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing Graphene Quantum Dots. <i>Advanced Functional Materials</i> , 2018 , 28, 1802585	15.6	94
331	Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16281-16288	13	92
330	Controllable Underwater Oil-Adhesion-Interface Films Assembled from Nonspherical Particles. <i>Advanced Functional Materials</i> , 2011 , 21, 4436-4441	15.6	90
329	Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	90
328	Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1730-1735		87
327	Bio-inspired vertebral design for scalable and flexible perovskite solar cells. <i>Nature Communications</i> , 2020 , 11, 3016	17.4	86
326	Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. <i>Lab on A Chip</i> , 2012 , 12, 3089-95	7.2	86

(2015-2016)

325	Flexible Circuits and Soft Actuators by Printing Assembly of Graphene. <i>ACS Applied Materials & Materials & Interfaces</i> , 2016 , 8, 12369-76	9.5	85
324	Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. <i>Advanced Energy Materials</i> , 2018 , 8, 1702960	21.8	82
323	A general strategy for assembling nanoparticles in one dimension. <i>Advanced Materials</i> , 2014 , 26, 2501-7	24	81
322	Direct-Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. <i>Small</i> , 2017 , 13, 16032	17	80
321	Patterned photonic crystals fabricated by inkjet printing. Journal of Materials Chemistry C, 2013, 1, 6048	7.1	8o
320	Distinct ice patterns on solid surfaces with various wettabilities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11285-11290	11.5	79
319	Inkjet printed colloidal photonic crystal microdot with fast response induced by hydrophobic transition of poly(N-isopropyl acrylamide). <i>Journal of Materials Chemistry</i> , 2012 , 22, 21405		79
318	Control over the Wettability of Colloidal Crystal Films by Assembly Temperature. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 188-192	4.8	79
317	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. <i>Nature Communications</i> , 2019 , 10, 950	17.4	78
316	Splitting a droplet for femtoliter liquid patterns and single cell isolation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 9060-5	9.5	78
315	A general patterning approach by manipulating the evolution of two-dimensional liquid foams. <i>Nature Communications</i> , 2017 , 8, 14110	17.4	77
314	Nacre-inspired crystallization and elastic Brick-and-mortarIstructure for a wearable perovskite solar module. <i>Energy and Environmental Science</i> , 2019 , 12, 979-987	35.4	77
313	Superhydrophobic surface at low surface temperature. <i>Applied Physics Letters</i> , 2011 , 98, 093118	3.4	74
312	Highly reproducible SERS arrays directly written by inkjet printing. <i>Nanoscale</i> , 2015 , 7, 421-5	7.7	73
311	Low-Dimensional Dion-Jacobson-Phase Lead-Free Perovskites for High-Performance Photovoltaics with Improved Stability. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6909-6914	16.4	72
310	Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells. <i>Scientific Reports</i> , 2015 , 5, 15889	4.9	72
309	Programmable droplet manipulation by a magnetic-actuated robot. Science Advances, 2020, 6, eaay5808	14.3	71
308	Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17590-17597	13	70

307	One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217	7.1	68
306	Thermochromic corellhell nanofibers fabricated by melt coaxial electrospinning. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 269-274	2.9	67
305	Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate. <i>NPG Asia Materials</i> , 2012 , 4, e21-e21	10.3	66
304	Patterned photonic crystals for hiding information. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4621-4628	7.1	65
303	Healable green hydrogen bonded networks for circuit repair, wearable sensor and flexible electronic devices. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13138-13144	13	64
302	Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. <i>Advanced Functional Materials</i> , 2019 , 29, 1902629	15.6	64
301	Low-Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High-Performance Photovoltaics. <i>Advanced Materials</i> , 2019 , 31, e1901966	24	63
300	Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. <i>Chemical Communications</i> , 2016 , 52, 10948-51	5.8	63
299	Fabrication of functional colloidal photonic crystals based on well-designed latex particles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14113		62
298	A colorful oil-sensitive carbon inverse opal. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5098		62
297	Hydrogen-Bonding-Driven Wettability Change of Colloidal Crystal Films: From Superhydrophobicity to Superhydrophilicity. <i>Chemistry of Materials</i> , 2006 , 18, 4984-4986	9.6	62
296	Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection. <i>Advanced Functional Materials</i> , 2018 , 28, 1800448	15.6	61
295	Emerging Progress of Inkjet Technology in Printing Optical Materials. <i>Advanced Optical Materials</i> , 2016 , 4, 1915-1932	8.1	60
294	Condensation mode determines the freezing of condensed water on solid surfaces. <i>Soft Matter</i> , 2012 , 8, 8285	3.6	60
293	Four-Dimensional Screening Anti-Counterfeiting Pattern by Inkjet Printed Photonic Crystals. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2680-2685	4.5	59
292	Ilinging-Microdroplet[Patterning Upon High-Adhesion, Pillar-Structured Silicon Substrates. Advanced Functional Materials, 2011 , 21, 3297-3307	15.6	59
291	Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 541-547	13	57
290	Wettability Alteration of Polymer Surfaces Produced by Scraping. <i>Journal of Adhesion Science and Technology</i> , 2008 , 22, 395-402	2	55

(2011-2015)

289	Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2072-2081	13	54
288	Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700253	6.4	54
287	Fabrication of Patterned Concave Microstructures by Inkjet Imprinting. <i>Advanced Functional Materials</i> , 2015 , 25, 3286-3294	15.6	53
286	Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19095-19101	13	53
285	Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water. <i>Soft Matter</i> , 2011 , 7, 5144	3.6	53
284	Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16048-16052	16.4	51
283	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. <i>Chemical Society Reviews</i> , 2021 , 50, 5898-5951	58.5	51
282	Spontaneous Uphill Movement and Self-Removal of Condensates on Hierarchical Tower-like Arrays. <i>ACS Nano</i> , 2016 , 10, 9456-9462	16.7	50
281	Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. <i>Nature Communications</i> , 2017 , 8, 15154	17.4	49
280	Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8127		45
279	Fabrication of large-area patterned photonic crystals by ink-jet printing. <i>Journal of Materials Chemistry</i> , 2009 ,		44
278	A Butterfly-Inspired Hierarchical Light-Trapping Structure towards a High-Performance Polarization-Sensitive Perovskite Photodetector. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16456-16462	16.4	42
277	Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective Bool roof Denergy and Environmental Science, 2011 , 4, 3364	35.4	42
276	Controllable Synthesis of Latex Particles with Multicavity Structures. <i>Macromolecules</i> , 2011 , 44, 2404-24	193	42
275	Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 32574-32580	9.5	41
274	Multi-mode structural-color anti-counterfeiting labels based on physically unclonable amorphous photonic structures with convenient artificial intelligence authentication. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14069-14074	7.1	40
²⁷⁴ ²⁷³	photonic structures with convenient artificial intelligence authentication. Journal of Materials	7.1 24	40 39

271	Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solidgas reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4791-4796	13	38
270	A photochromic sensor microchip for high-performance multiplex metal ions detection. <i>Scientific Reports</i> , 2015 , 5, 9724	4.9	38
269	Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. <i>Advanced Materials Technologies</i> , 2018 , 4, 1800574	6.8	38
268	Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. <i>Nanomaterials</i> , 2018 , 8,	5.4	37
267	Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12517-12523	16.4	37
266	Manipulating Oil Droplets by Superamphiphobic Nozzle. <i>Small</i> , 2015 , 11, 4837-43	11	37
265	Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2262		37
264	Printable Functional Chips Based on Nanoparticle Assembly. <i>Small</i> , 2017 , 13, 1503339	11	36
263	Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina. <i>Applied Physics Letters</i> , 2010 , 97, 233107	3.4	36
262	Photo- and Proton-Dual-Responsive Fluorescence Switch Based on a Bisthienylethene-Bridged Naphthalimide Dimer and Its Application in Security Data Storage. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 2064-2067	3.2	36
261	Droplet Precise Self-Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie - International Edition, 2020 , 59, 10535-10539	16.4	34
260	Janus Structural Color from a 2D Photonic Crystal Hybrid with a Fabry B erot Cavity. <i>Advanced Optical Materials</i> , 2018 , 6, 1800651	8.1	34
259	Ink Engineering of Inkjet Printing Perovskite. ACS Applied Materials & amp; Interfaces, 2020, 12, 39082-39	9991	33
258	A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures. <i>Advanced Materials</i> , 2018 , 30, 1703963	24	33
257	Patterned Wettability Surface for Competition-Driving Large-Grained Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1900838	21.8	32
256	Wearable Power Source: A Newfangled Feasibility for Perovskite Photovoltaics. <i>ACS Energy Letters</i> , 2019 , 4, 1065-1072	20.1	32
255	Inkjet printing bendable circuits based on an oil-water interface reaction. <i>Applied Surface Science</i> , 2018 , 445, 391-397	6.7	32
254	Facile fabrication of a superhydrophilic uperhydrophobic patterned surface by inkjet printing a sacrificial layer on a superhydrophilic surface. <i>RSC Advances</i> , 2016 , 6, 31470-31475	3.7	32

Photonic crystal concentrator for efficient output of dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2650		32
3D Printing a Biomimetic Bridge-Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. <i>Advanced Materials</i> , 2021 , 33, e2102443	24	32
Swarm Intelligence-Inspired Spontaneous Fabrication of Optimal Interconnect at the Micro/Nanoscale. <i>Advanced Materials</i> , 2017 , 29, 1605223	24	31
Photoelectric Cooperative Induced Wetting on Aligned-Nanopore Arrays for Liquid Reprography. <i>Advanced Functional Materials</i> , 2011 , 21, 4519-4526	15.6	31
Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 22644-51	9.5	30
Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21	16.4	30
Tautomeric Molecule Acts as a "Sunscreen" for Metal Halide Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8673-8677	16.4	30
Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. <i>Nature Communications</i> , 2020 , 11, 5402	17.4	29
A General Approach for Fluid Patterning and Application in Fabricating Microdevices. <i>Advanced Materials</i> , 2018 , 30, e1802172	24	29
Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed Bil3/CH3NH3I stacking layers. <i>RSC Advances</i> , 2017 , 7, 43826-43830	3.7	29
Elaborately Aligning Bead-Shaped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy. <i>Advanced Functional Materials</i> , 2012 , 22, 4569-4576	15.6	29
Transparent Ag@Augraphene patterns with conductive stability via inkjet printing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2800-2806	7.1	28
Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device. <i>Advanced Science</i> , 2016 , 3, 1600120	13.6	28
A non-planar pentaphenylbenzene functionalized benzo[2,1,3]thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2709		28
Fabrication of Bendable Circuits on a Polydimethylsiloxane (PDMS) Surface by Inkjet Printing Semi-Wrapped Structures. <i>Materials</i> , 2016 , 9,	3.5	28
Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3445-3451	7.1	27
A heatable and evaporation-free miniature reactor upon superhydrophobic pedestals. <i>Soft Matter</i> , 2012 , 8, 631-635	3.6	27
A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. Journal of Materials Chemistry, 2007, 17, 3530		26
	Chemistry, 2008, 18, 2650 3D Printing a Biomimetic Bridge-Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Advanced Materials, 2021, 33, e2102443 Swarm Intelligence-Inspired Spontaneous Fabrication of Optimal Interconnect at the Micro/Nanoscale. Advanced Materials, 2017, 29, 1605223 Photoelectric Cooperative Induced Wetting on Aligned-Nanopore Arrays for Liquid Reprography. Advanced Functional Materials, 2011, 21, 4519-4526 Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. ACS Applied Materials Ramp; Interfaces, 2015, 7, 22644-51 Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21 Tautomeric Molecule Acts as a "Sunscreen" for Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8673-8677 Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402 A General Approach for Fluid Patterning and Application in Fabricating Microdevices. Advanced Materials, 2018, 30, e1802172 Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed Bil3/CH3NH31 stacking layers. RSC Advances, 2017, 7, 43826-43830 Elaborately Aligning Bead-Shaped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy. Advanced Functional Materials, 2012, 22, 4569-4576 Transparent Ag@Außraphene patterns with conductive stability via inkjet printing. Journal of Materials Chemistry, 2017, 5, 2800-2806 Direct Wirting of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device. Advanced Science, 2016, 3, 1600120 A non-planar pentaphenylbenzene functionalized benzol2, 1, 3)thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. Journal of Materials Chemistry, 2008,	Chemistry, 2008, 18, 2650 3D Printing a Biomimetic Bridge-Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Advanced Materials, 2021, 33, e2102443 24 Swarm Intelligence-Inspired Spontaneous Fabrication of Optimal Interconnect at the Micro/Nanoscale. Advanced Materials, 2017, 29, 1605223 Photoelectric Cooperative Induced Wetting on Aligned-Nanopore Arrays for Liquid Reprography. Advanced Audunced Interional Materials, 2011, 21, 4519-4526 Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. ACS Applied Materials & Bamp; Interfaces, 2015, 7, 22644-51 Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21 Tautomeric Molecule Acts as a "Sunscreen" for Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8673-8677 Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402 A General Approach for Fluid Patterning and Application in Fabricating Microdevices. Advanced Materials, 2018, 30, e1802172 Eaborately Aligning Bead-Shaped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy. Advanced Functional Materials, 2012, 22, 4569-4576 Transparent Ag@Außraphene patterns with conductive stability via inkjet printing. Journal of Materials Chemistry, C, 2017, 5, 2800-2806 Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device. Advanced Science, 2016, 3, 1600120 A non-planar pentaphenylbenzene functionalized benzo (2,1,3) thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 2709 Fabrication of Bendable Circuits on a Polydimethylsiloxane (PDMS) Surface by Inkjet Printing 3-5 Color-tunable and highly solid

235	A Rainbow Structural-Color Chip for Multisaccharide Recognition. <i>Angewandte Chemie</i> , 2016 , 128, 7025-	70 28	26
234	Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity. Nanoscale, 2016 , 8, 9556-62	7.7	26
233	Trihydrazine Dihydriodide-Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900285	7.1	25
232	Bubble Architectures for Locally Resonant Acoustic Metamaterials. <i>Advanced Functional Materials</i> , 2019 , 29, 1906984	15.6	25
231	Photo-induced amplification of readout contrast in nanoscale data storage. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4299		25
230	Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. <i>Angewandte Chemie</i> , 2016 , 128, 4337-4341	3.6	25
229	Large-area, crack-free polysilazane-based photonic crystals. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5300		24
228	Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. Journal of Materials Chemistry, 2011 , 21, 5234		24
227	In Situ Inkjet Printing of the Perovskite Single-Crystal Array-Embedded Polydimethylsiloxane Film for Wearable Light-Emitting Devices. <i>ACS Applied Materials & Devices</i> , 2020 , 12, 22157-22162	9.5	24
226	Enhanced Efficiency of Perovskite Solar Cells by using Corelltrathin Shell Structure Ag@SiO2 Nanowires as Plasmonic Antennas. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700169	6.4	23
225	Plasmonic cooperation effect of metal nanomaterials at AuliO2Ag interface to enhance photovoltaic performance for dye-sensitized solar cells. <i>RSC Advances</i> , 2015 , 5, 210-214	3.7	23
224	Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7760	13	23
223	Ultrahigh density data storage based on organic materials with SPM techniques. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3522-3533		23
222	Viscosity of interfacial water regulates ice nucleation. <i>Applied Physics Letters</i> , 2014 , 104, 101605	3.4	22
221	High-performance optoelectrical dual-mode memory based on spiropyran-containing polyimide. <i>Applied Physics Letters</i> , 2010 , 97, 253304	3.4	22
220	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14307-14312	16.4	22
219	A Novel Strategy for Scalable High-Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. <i>Advanced Materials</i> , 2018 , 30, e1804454	24	22
218	Three dimensional MOF-sponge for fast dynamic adsorption. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 5746-5752	3.6	21

(2016-2013)

217	A Multi-stopband Photonic-Crystal Microchip for High-Performance Metal-Ion Recognition Based on Fluorescent Detection. <i>Angewandte Chemie</i> , 2013 , 125, 7437-7440	3.6	20
216	Continuous 3D printing from one single droplet. <i>Nature Communications</i> , 2020 , 11, 4685	17.4	20
215	Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS App</i>	9.5	20
214	Defect Passivation by a DAD Type Hole-Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 2030-2037	20.1	20
213	Fabrication of Silver Mesh/Grid and Its Applications in Electronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 3493-3511	9.5	20
212	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. <i>ACS Energy Letters</i> , 2018 , 3, 1578-1583	20.1	20
211	Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals. <i>Angewandte Chemie</i> , 2017 , 129, 1017-1021	3.6	19
21 0	Precise Assembly of Particles for Zigzag or Linear Patterns. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15348-15352	16.4	19
209	Steerable Droplet Bouncing for Precise Materials Transportation. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901033	4.6	19
208	pH-responsive dual fluorescent coreBhell microspheres fabricated via a one-step emulsion polymerization. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3802	7.1	19
207	Self-Healable Organogel Nanocomposite with Angle-Independent Structural Colors. <i>Angewandte Chemie</i> , 2017 , 129, 10598-10602	3.6	19
206	Printable Smart Materials and Devices: Strategies and Applications. <i>Chemical Reviews</i> , 2021 ,	68.1	19
205	Cascade-Microphase-Separation-Induced Hierarchical Photonic Structures in Supramolecular Organogel for Deformation-Insensitive Structural Colors. <i>Advanced Optical Materials</i> , 2019 , 7, 1801749	8.1	18
204	Design of Low Bandgap CsPb Sn I Br Perovskite Solar Cells with Excellent Phase Stability. <i>Small</i> , 2021 , 17, e2101380	11	18
203	Tailored Porphyrin Assembly at the Oil Aqueous Interface Based on the Receding of Three-Phase Contact Line of Droplet Template. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400365	4.6	17
202	Printing 1D Assembly Array of Single Particle Resolution for Magnetosensing. <i>Small</i> , 2018 , 14, e180011	711	17
201	Spider-web inspired multi-resolution graphene tactile sensor. Chemical Communications, 2018, 54, 4810	- 4 &13	17
200	The Ag shell thickness effect of Au@Ag@SiO2 core-shell nanoparticles on the optoelectronic performance of dye sensitized solar cells. <i>Chemical Communications</i> , 2016 , 52, 2390-3	5.8	17

199	Improving the photo current of the [60]PCBM/P3HT photodetector device by using wavelength-matched photonic crystals. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1500	7.1	17
198	Micropatterning of polydiacetylene based on a photoinduced chromatic transition and mechanism study. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 942-946	2.9	17
197	Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Disc</i>	9.5	17
196	Solution-processed organic semiconductor crystals for field-effect transistors: from crystallization mechanism towards morphology control. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1126-1149	7.1	17
195	Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. <i>IScience</i> , 2021 , 24, 102121	6.1	17
194	Formation of Multicomponent Size-Sorted Assembly Patterns by Tunable Templated Dewetting. Angewandte Chemie - International Edition, 2018, 57, 16126-16130	16.4	17
193	A Butterfly-Inspired Hierarchical Light-Trapping Structure towards a High-Performance Polarization-Sensitive Perovskite Photodetector. <i>Angewandte Chemie</i> , 2019 , 131, 16608-16614	3.6	16
192	Bioinspired Lotus-like Self-Illuminous Coating. ACS Applied Materials & amp; Interfaces, 2015, 7, 18424-8	9.5	16
191	Controlling the film structure by regulating 2D Ruddlesden Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5874-5	i g g g g	16
190	Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer. <i>ACS Applied Materials & Applied Materials & Description</i> (12, 22108-22114)	9.5	16
189	Improving the luminescence performance of quantum dot-based photonic crystals for white-light emission. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 39-44	7.1	16
188	Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 41521-41528	9.5	16
187	A Biomimetic Self-Shield Interface for Flexible Perovskite Solar Cells with Negligible Lead Leakage. <i>Advanced Functional Materials</i> ,2106460	15.6	16
186	Preparation of patterned ultrathin polymer films. <i>Langmuir</i> , 2014 , 30, 9436-41	4	15
185	Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskites Solar Cells. <i>Advanced Materials</i> , 2021 , e2106822	24	15
184	Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. <i>Langmuir</i> , 2020 , 36, 9952-9959	4	15
183	Moir[Perovskite Photodetector toward High-Sensitive Digital Polarization Imaging. <i>Advanced Energy Materials</i> , 2021 , 11, 2100742	21.8	15
182	Sliding three-phase contact line of printed droplets for single-crystal arrays. <i>Nanotechnology</i> , 2016 , 27, 184002	3.4	15

181	Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. <i>Nano Research</i> ,1	10	15
180	Facile full-color printing with a single transparent ink. Science Advances, 2021, 7, eabh1992	14.3	15
179	Bioinspired Anti-Moir[Random Grids via Patterning Foams. Advanced Optical Materials, 2017, 5, 170075	18.1	14
178	Photonic crystal boosted chemiluminescence reaction. <i>Laser and Photonics Reviews</i> , 2013 , 7, L39-L43	8.3	14
177	Interfacial Effect of Novel Corellriple Shell Structured Au@SiO2@Ag@SiO2 with Ultrathin SiO2 Passivation Layer between the Metal Interfaces on Efficient Dye-Sensitized Solar Cells. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500383	4.6	14
176	Enhanced sensitivity in a Hg2+ sensor by photonic crystals. <i>Analytical Methods</i> , 2010 , 2, 448	3.2	14
175	Bioinspired Quasi-3D Multiplexed Anti-Counterfeit Imaging via Self-Assembled and Nanoimprinted Photonic Architectures. <i>Advanced Materials</i> , 2021 , e2107243	24	14
174	Heterogeneous Wettability Surfaces: Principle, Construction, and Applications. <i>Small Structures</i> , 2020 , 1, 2000028	8.7	14
173	A general strategy for printing colloidal nanomaterials into one-dimensional micro/nanolines. <i>Nanoscale</i> , 2018 , 10, 22374-22380	7.7	14
172	Wetting of Inkjet Polymer Droplets on Porous Alumina Substrates. <i>Langmuir</i> , 2017 , 33, 130-137	4	13
171	Low-Dimensional Dion I acobson-Phase Lead-Free Perovskites for High-Performance Photovoltaics with Improved Stability. <i>Angewandte Chemie</i> , 2020 , 132, 6976-6981	3.6	13
170	Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. <i>Soft Matter</i> , 2011 , 7, 4156	3.6	13
169	Reversibly phototunable TiO2 photonic crystal modulated by Ag nanoparticles oxidation/reduction. <i>Applied Physics Letters</i> , 2011 , 98, 023110	3.4	13
168	Colorful Efficient MoirEPerovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e2008091	24	13
167	From 2D to 3D: a facile and effective procedure for fabrication of planar CH3NH3PbI3 perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17867-17873	13	13
166	Distinct electronic switching behaviors of triphenylamine-containing polyimide memories with different bottom electrodes. <i>Applied Physics Letters</i> , 2010 , 96, 213305	3.4	12
165	Temperature-controlled morphology evolution of porphyrin nanostructures at an oil queous interface. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2445-2449	7.1	11
164	Reversible gold nanorod assembly triggered by pH-responsive DNA nanomachine. <i>Applied Physics Letters</i> , 2013 , 102, 123101	3.4	11

163	Enhanced nanoparticle-oligonucleotide conjugates for DNA nanomachine controlled surface-enhanced Raman scattering switch. <i>Applied Physics Letters</i> , 2011 , 98, 133704	3.4	11
162	Novel Thermally Stable Single-Component Organic-Memory Cell Based on Oxotitanium Phthalocyanine Material. <i>IEEE Electron Device Letters</i> , 2009 , 30, 931-933	4.4	11
161	Crack-free hematite inverse opal photo-anodes for enhancing photo-electrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22929-22937	13	11
160	A stimuli responsive triplet-triplet annihilation upconversion system and its application as a ratiometric sensor for Fe ions <i>RSC Advances</i> , 2019 , 9, 36410-36415	3.7	11
159	Heterogeneous Integration of Three-Primary-Color Photoluminescent Nanoparticle Arrays with Defined Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 1616-1623	9.5	11
158	Bioinspired Synergy Sensor Chip of Photonic Crystals-Graphene Oxide for Multiamines Recognition. <i>Analytical Chemistry</i> , 2018 , 90, 6371-6375	7.8	11
157	A green solvent for operating highly efficient low-power photon upconversion in air. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 14516-14520	3.6	10
156	A co-assembly system of an aromatic donor and acceptor: charge transfer, electric bistability and photoconductivity. <i>New Journal of Chemistry</i> , 2010 , 34, 2530	3.6	10
155	Surface arrangement of azobenzene moieties in two different azobenzene-derived Langmiur B lodgett films. <i>Surface and Interface Analysis</i> , 2006 , 38, 1343-1347	1.5	10
154	Inkjet Printed Physically-Unclonable Structural-Color Anticounterfeiting Labels with Convenient Artificial Intelligence Authentication. <i>Advanced Materials Interfaces</i> ,2101281	4.6	10
153	Designing Laplace Pressure Pattern for Microdroplet Manipulation. <i>Langmuir</i> , 2018 , 34, 639-645	4	9
152	Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence. <i>Scientific Reports</i> , 2015 , 5, 12965	4.9	9
151	Stable and reversible optoelectrical dual-mode data storage based on a ferrocenlylspiropyran molecule. <i>Applied Physics Letters</i> , 2009 , 95, 183307	3.4	9
150	Influence of Deoxyribose Group on Self-Assembly of Thymidine on Au(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17590-17594	3.8	9
149	A facile method of shielding from UV damage by polymer photonic crystals. <i>Polymer International</i> , 2008 , 57, 509-514	3.3	9
148	Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX3 perovskite films. Energy and Environmental Science,	35.4	9
147	pH-Responsive nano sensing valve with self-monitoring state property based on hydrophobicity switching. <i>RSC Advances</i> , 2016 , 6, 52292-52299	3.7	9
146	Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation <i>Nano Letters</i> , 2022 ,	11.5	9

(2021-2019)

145	Fully Printed Flexible Crossbar Memory Devices with Tip-Enhanced Micro/Nanostructures. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900131	6.4	8
144	Printed High-Density and Flexible Photodetector Arrays via Size-matched Heterogeneous Micro-/Nanostructure. <i>Advanced Optical Materials</i> , 2020 , 8, 2000370	8.1	8
143	Patterned Arrays of Functional Lateral Heterostructures via Sequential Template-Directed Printing. <i>Small</i> , 2018 , 14, e1800792	11	8
142	Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. <i>ChemPhysChem</i> , 2018 , 19, 2101-2106	3.2	8
141	Enhanced light extraction by heterostructure photonic crystals toward white-light-emission. Journal of Colloid and Interface Science, 2016 , 465, 42-6	9.3	8
140	Microfiber-Knitted Crossweave Patterns for Multiresolution Physical Kineses Analysis Electronics. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800107	6.8	8
139	A facile fabrication strategy for anisotropic photonic crystals using deformable spherical nanoparticles. <i>Nanoscale</i> , 2019 , 11, 14147-14154	7.7	8
138	Patterned liquid permeation through the TiO2 nanotube array coated Ti mesh by photoelectric cooperation for liquid printing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2498	13	8
137	Surface-mediated buckling of corelinell spheres for the formation of oriented anisotropic particles with tunable morphologies. <i>Soft Matter</i> , 2013 , 9, 2589	3.6	8
136	GasBolid reaction for in situ deposition of Cu3SbS4 on a mesoporous TiO2 film. <i>RSC Advances</i> , 2017 , 7, 41540-41545	3.7	8
135	Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays. <i>Soft Matter</i> , 2010 , 6, 2470	3.6	8
134	A high ON/OFF ratio organic film for photo- and electro-dual-mode recording. <i>Applied Physics Letters</i> , 2009 , 94, 163309	3.4	8
133	Recent research progress in wettability of colloidal crystals. Science China Chemistry, 2010, 53, 318-326	7.9	8
132	Effects of diazonaphthoquinone groups on photosensitive coating. <i>Journal of Applied Polymer Science</i> , 2010 , 117, 2360-2365	2.9	8
131	A Diverse Micromorphology of Photonic Crystal Chips for Multianalyte Sensing. Small, 2021, 17, e20067	′2 <u>/3</u> ′	8
130	Low-temperature processed Tantalum/ Niobium co-doped TiO2 electron transport layer for high-performance planar perovskite solar cells. <i>Nanotechnology</i> , 2021 ,	3.4	8
129	A fluid-guided printing strategy for patterning high refractive index photonic microarrays. <i>Science Bulletin</i> , 2021 , 66, 250-256	10.6	8
128	Precise Droplet Manipulation Based on Surface Heterogeneity. <i>Accounts of Materials Research</i> , 2021 , 2, 230-241	7.5	8

127	Precise Assembly of Particles for Zigzag or Linear Patterns. <i>Angewandte Chemie</i> , 2017 , 129, 15550-155	54 3.6	7
126	A General Layer-by-Layer Printing Method for Scalable High-Resolution Full-Color Flexible Luminescent Patterns. <i>Advanced Optical Materials</i> , 2019 , 7, 1900127	8.1	7
125	Improved film morphology of (CH3NH3)3Bi2I9 via cation displacement approach for lead-free perovskite solar cells. <i>Journal of Materials Science</i> , 2019 , 54, 10371-10378	4.3	7
124	Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14234-14240	16.4	7
123	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 1619	6-41. 6 20	18 7
122	High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces. <i>Angewandte Chemie</i> , 2011 , 123, 5423-5426	3.6	7
121	Slot-Waveguide Silicon Nitride Organic Hybrid Distributed Feedback Laser. <i>Scientific Reports</i> , 2019 , 9, 18438	4.9	7
120	A novel method for fabrication of CdS quantum dot-sensitized solar cells. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 14103-14109	2.1	6
119	Omnidirectional Photodetectors Based on Spatial Resonance Asymmetric Facade via a 3D Self-Standing Strategy. <i>Advanced Materials</i> , 2020 , 32, e1907280	24	6
118	Organic dye-sensitized sponge-like TiOlphotoanode for dye-sensitized solar cells. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120314	3	6
117	A white-lighting LED system with a highly efficient thin luminous film. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 98, 85-90	2.6	6
116	Electrical bistable behavior of an organic thin film through proton transfer. <i>Applied Physics Letters</i> , 2007 , 90, 052111	3.4	6
115	Evaporation Induced Spontaneous Micro-Vortexes through Engineering of the Marangoni Flow. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23684-23689	16.4	6
114	Formation of Multicomponent Size-Sorted Assembly Patterns by Tunable Templated Dewetting. <i>Angewandte Chemie</i> , 2018 , 130, 16358-16362	3.6	6
113	Magnetic-actuated "capillary container" for versatile three-dimensional fluid interface manipulation. <i>Science Advances</i> , 2021 , 7,	14.3	6
112	Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24234-24240	16.4	6
111	Perovskite Solar Cells: Low-Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High-Performance Photovoltaics (Adv. Mater. 35/2019). <i>Advanced Materials</i> , 2019 , 31, 1970252	24	5
110	Patterned flexible graphene sensor via printing and interface assembly. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6317-6322	7.1	5

(2021-2019)

109	A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2019 , 131, 6760-6764	3.6	5	
108	Inkjet Printing of a Micro/Nanopatterned Surface to Serve as Microreactor Arrays. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 30962-30971	9.5	5	
107	Patterning: Controllable Printing Droplets for High-Resolution Patterns (Adv. Mater. 40/2014). <i>Advanced Materials</i> , 2014 , 26, 6983-6983	24	5	
106	High effective sensors based on photonic crystals. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2010 , 5, 115-122		5	
105	Nanostructural effects on optical properties of tungsten inverse opal. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 93, 489-493	2.6	5	
104	Breaking the symmetry to suppress the Plateau-Rayleigh instability and optimize hydropower utilization. <i>Nature Communications</i> , 2021 , 12, 6899	17.4	5	
103	Inhibited-nanophase-separation modulated polymerization for recoverable ultrahigh-strain biobased shape memory polymers. <i>Materials Horizons</i> , 2020 , 7, 2760-2767	14.4	5	
102	Controllable printing of large-scale compact perovskite films for flexible photodetectors. <i>Nano Research</i> ,1	10	5	
101	A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching. <i>ChemPhysChem</i> , 2017 , 18, 1317-1323	3.2	4	
100	Fabrication of Phase-Change Polymer Colloidal Photonic Crystals. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	4	
99	A Selenium-Based Cathode for a High-Voltage Tandem Photoelectrochemical Solar Cell. <i>Angewandte Chemie</i> , 2012 , 124, 10497-10500	3.6	4	
98	Superoleophobic Surfaces: Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface (Adv. Mater. 6/2009). <i>Advanced Materials</i> , 2009 , 21, NA-NA	24	4	
97	Droplet Manipulation and Crystallization Regulation in Inkjet-Printed Perovskite Film Formation. <i>CCS Chemistry</i> ,1-21	7.2	4	
96	Flexible and Wearable Optoelectronic Devices Based on Perovskites. <i>Advanced Materials Technologies</i> ,2101124	6.8	4	
95	Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet-Triplet Annihilation Upconversion Nanomicelles. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26725-26	5 7 5 3 4	4	
94	Suppressing the Step Effect of 3D Printing for Constructing Contact Lenses. <i>Advanced Materials</i> , 2021 , e2107249	24	4	
93	Inkjet printing porous graphene/silver flexible electrode with enhanced electrochemical performance based on vapor phase reduction. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 10795-10802	2.1	4	
92	A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16547-16553	16.4	4	

91	Soft Acoustic Metamaterials: Bubble Architectures for Locally Resonant Acoustic Metamaterials (Adv. Funct. Mater. 51/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970346	15.6	4
90	Vapor-Induced Liquid Collection and Microfluidics on Superlyophilic Substrates. <i>ACS Applied Materials & Description of the </i>	9.5	4
89	Methylamine-assisted secondary grain growth for CH3NH3PbI3 perovskite films with large grains and a highly preferred orientation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7625-7630	13	4
88	Patterning Bubbles by the Stick-Slip Motion of the Advancing Triple Phase Line on Nanostructures. <i>Langmuir</i> , 2018 , 34, 15804-15811	4	4
87	Recent Progress in Responsive Structural Color Journal of Physical Chemistry Letters, 2022, 2885-2900	6.4	4
86	Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. <i>RSC Advances</i> , 2015 , 5, 76666-76669	3.7	3
85	Gas/liquid interfacial manipulation by electrostatic inducing for nano-resolution printed circuits. Journal of Materials Chemistry C, 2016 , 4, 10847-10851	7.1	3
84	Inkjet Printing: Fabrication of Transparent Multilayer Circuits by Inkjet Printing (Adv. Mater. 7/2016). <i>Advanced Materials</i> , 2016 , 28, 1523-1523	24	3
83	Stretching Velocity-Dependent Dynamic Adhesion of the Water/Oil Interfaces for High Quality Lithographic Printing. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400080	4.6	3
82	HIGH DENSITY MAGNETIC DATA STORAGE 2009 , 1-68		3
82	HIGH DENSITY MAGNETIC DATA STORAGE 2009, 1-68 The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376	1.5	3
	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface.		
81	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376 Tunning Intermolecular Interaction of Pentide-Conjugated Alegen in Nano-Confined Space for	e 83 8	3
81	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376 Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-162 Releasing Nanocapsules for High-Throughput Printing of Stable Perovskite Solar Cells. Advanced	e 83 8	3 3
81 80 79	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376 Tunning Intermolecular Interaction of Peptide-Conjugated AlEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-162 Releasing Nanocapsules for High-Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291 Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals Small Methods, 2021,	21.8	3 3
81 80 79 78	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376 Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-162 Releasing Nanocapsules for High-Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291 Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals Small Methods, 2021, 5, e2100690 A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique	21.8 12.8	3333
81 80 79 78 77	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. Surface and Interface Analysis, 2006, 38, 1372-1376 Tunning Intermolecular Interaction of Peptide-Conjugated AlEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-162 Releasing Nanocapsules for High-Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291 Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals Small Methods, 2021, 5, e2100690 A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique Orientation Advanced Materials, 2022, e2200928 A general method for growth of perovskite single-crystal arrays for high performance	21.8 12.8	3333

73	Solar Cells: Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping (Adv. Energy Mater. 12/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 187009	5 2 1.8	2
72	Structural Coloration: Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing Graphene Quantum Dots (Adv. Funct. Mater. 29/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870198	15.6	2
71	Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite. <i>IScience</i> , 2019 , 17, 1-9	6.1	2
70	Synthesis and thermal analysis of disubstituted propiolates bearing terphenylene mesogen. <i>Journal of Thermal Analysis and Calorimetry</i> , 2010 , 99, 391-397	4.1	2
69	Vapor-induced marangoni coating for organic functional films. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 17518-17525	7.1	2
68	Dynamic investigation of gas-releasing chemical reactions through a photonic crystal. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12800-12805	7.1	2
67	Perovskite Solar Cells: Colorful Efficient Moir Perovskite Solar Cells (Adv. Mater. 15/2021). <i>Advanced Materials</i> , 2021 , 33, 2170116	24	2
66	Fully Printed Geranium-Inspired Encapsulated Arrays for Quantitative Odor Releasing. <i>ACS Omega</i> , 2019 , 4, 19977-19982	3.9	2
65	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. <i>Journal of Materials Chemistry C</i> ,	7.1	2
64	Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. <i>Angewandte Chemie</i> , 2021 , 133, 24436	3.6	2
63	Tunable Fluid-Type Metasurface for Wide-Angle and Multifrequency Water-Air Acoustic Transmission. <i>Research</i> , 2021 , 2021, 9757943	7.8	2
62	FAPbI 3 Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2200	0 1/ 2 <u>1</u> 0	2
61	Micro-Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. <i>Advanced Functional Materials</i> ,2200385	15.6	2
60	Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration. <i>Advanced Intelligent Systems</i> ,2100253	6	2
59	Inkjet Printing of Photonic Crystals 2017 , 183-211		1
58	Domino Patterning of Water and Oil Induced by Emulsion Breaking. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 17960-17967	9.5	1
57	From 1D to 3D: Fabrication of CH3NH3PbI3 Perovskite Solar Cell Thin Films from (Pyrrolidinium)PbI3 via Organic Cation Exchange Approach. <i>Energy Technology</i> , 2020 , 8, 2000148	3.5	1
56	Perovskite Solar Cells: Patterned Wettability Surface for Competition-Driving Large-Grained Perovskite Solar Cells (Adv. Energy Mater. 25/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970098	21.8	1

55	Polymer Photonic Crystals 2014 , 1-46		1
54	Lithographic Printing: Stretching Velocity-Dependent Dynamic Adhesion of the Water/Oil Interfaces for High Quality Lithographic Printing (Adv. Mater. Interfaces 6/2014). <i>Advanced Materials Interfaces</i> , 2014 , 1,	4.6	1
53	Photonic Crystals: Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line (Advanced Optical Materials 1/2014). <i>Advanced Optical Materials</i> , 2014 , 2, 102-102	8.1	1
52	Rtktitelbild: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew. Chem. 23/2011). <i>Angewandte Chemie</i> , 2011 , 123, n/a-n/a	3.6	1
51	OPTICAL DATA STORAGE FOR THE FUTURE 2009 , 69-135		1
50	Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. <i>New Journal of Chemistry</i> , 2022 , 46, 2259-2265	3.6	1
49	Pen-writing high-quality perovskite films and degradable optoelectronic devices <i>RSC Advances</i> , 2022 , 12, 3924-3930	3.7	1
48	Stabilizing all-inorganic CsPbI3 perovskite films with polyacrylonitrile for photovoltaic solar cells. <i>Energy Advances</i> ,		1
47	Circular Subwavelength Photodetectors for 3D Space Exploration. Advanced Optical Materials, 2102163	8.1	1
46	A Coloration Biochip for Optical Virus Detection Based on Printed Single Nanoparticle Array. <i>Advanced Materials Interfaces</i> ,2102164	4.6	1
45	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. <i>Angewandte Chemie</i> , 2021 , 133, 14428-14433	3.6	1
44	Self-Driven Multiplex Reaction: Reactant and Product Diffusion via a Transpiration-Inspired Capillary. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 22031-22039	9.5	1
43	Micropatterning: Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device (Adv. Sci. 8/2016). <i>Advanced Science</i> , 2016 , 3,	13.6	1
42	Tautomeric Molecule Acts as a BunscreenIfor Metal Halide Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2021 , 133, 8755-8759	3.6	1
41	Self-Driven Droplet Vehicle for Material Patterning. Advanced Materials Interfaces, 2021, 8, 2101309	4.6	1
40	Fabrication of the Silver Grids by Interfacial Interaction. Advanced Engineering Materials,2100901	3.5	1
39	Enhancing efficiency and stability of perovskite solar cells via in situ incorporation of lead sulfide layer. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 3700-3704	5.8	1
38	Negative Refraction Acoustic Lens Based on Elastic Shell Encapsulated Bubbles. <i>Advanced Materials Technologies</i> ,2101186	6.8	1

37	Non-Hookean Droplet Spring for Enhancing Hydropower Harvest Small, 2022, e2200875	11	1
36	Skin-Driven Ultrasensitive Mechanoluminescence Sensor Inspired by Spider Leg Joint Slits <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 60689-60696	9.5	1
35	Advanced unconventional techniques for sub-100 nm nanopatterning. <i>Informa</i> dallMaterilly,	23.1	1
34	Progress in materials and technologies for ultrahigh density data storage. <i>Progress in Natural Science: Materials International</i> , 2003 , 13, 247-253	3.6	О
33	Suppressing the Step Effect of 3D Printing for Constructing Contact Lenses (Adv. Mater. 4/2022). <i>Advanced Materials</i> , 2022 , 34, 2270030	24	O
32	Flexible transparent electrodes based on metallic microflano architectures for perovskite solar cells. <i>Journal of Materials Chemistry C</i> ,	7.1	O
31	Evaporation Induced Spontaneous Micro-Vortexes through Engineering of the Marangoni Flow. <i>Angewandte Chemie</i> , 2020 , 132, 23892-23897	3.6	0
30	Water-Dispersing Perovskite Probes for the Rapid Imaging of Glioma Cells. <i>Advanced Optical Materials</i> , 2022 , 10, 2101835	8.1	О
29	Implementing Contact Angle Hysteresis in Moving Mesh-Based Two-Phase Flow Numerical Simulations <i>ACS Omega</i> , 2021 , 6, 35711-35717	3.9	О
28	Printed Chalcogenide/Metal Heterostructured Photodetectors for Flexible Near-Infrared Sensing. <i>Advanced Optical Materials</i> ,2200173	8.1	O
27	All-printed nanophotonic biochip for point-of-care testing of biomarkers Science Bulletin, 2022, 67, 1	191d.69	11 0
26	Advanced Nanoscale Materials for Ink Manufacture 2016 , 67-85		
25	Layer-by-Layer Printing: A General Layer-by-Layer Printing Method for Scalable High-Resolution Full-Color Flexible Luminescent Patterns (Advanced Optical Materials 12/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970045	8.1	
24	Deformation-Insensitive Structural Colors: Cascade-Microphase-Separation-Induced Hierarchical Photonic Structures in Supramolecular Organogel for Deformation-Insensitive Structural Colors	8.1	
	(Advanced Optical Materials 6/2019). Advanced Optical Materials, 2019, 7, 1970024		
23	(Advanced Optical Materials 6/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970024 Asymmetric Dewetting: Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line (Adv. Funct. Mater. 15/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 2344-2344	15.6	
23	Asymmetric Dewetting: Printing Patterned Fine 3D Structures by Manipulating the Three Phase	15.6 3.6	
	Asymmetric Dewetting: Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line (Adv. Funct. Mater. 15/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 2344-2344 Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. <i>Angewandte</i>		

19	A Self-Growing Strategy for Large-Scale Crystal Assembly Tubes. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 761-764	4.5
18	31-1: Invited Paper: Green Printing Technology for Manufacturing Functional Devices. <i>Digest of Technical Papers SID International Symposium</i> , 2018 , 49, 395-396	0.5
17	Nanoparticles: A General Strategy for Assembling Nanoparticles in One Dimension (Adv. Mater. 16/2014). <i>Advanced Materials</i> , 2014 , 26, 2500-2500	24
16	Photonic Crystals: Hydrophilic Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline (Small 23/2015). <i>Small</i> , 2015 , 11, 282	8-2828
15	Oil Droplets: Manipulating Oil Droplets by Superamphiphobic Nozzle (Small 37/2015). <i>Small</i> , 2015 , 11, 4988-4988	11
14	Back Cover: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew. Chem. Int. Ed. 23/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5228-5228	16.4
13	Patterning Assembly of Colloidal Particles 2022 , 305-329	
12	Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals (Small Methods 11/2021). <i>Small Methods</i> , 2021 , 5, 2170057	12.8
11	Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet Annihilation Upconversion Nanomicelles. <i>Angewandte Chemie</i> , 2021 , 133, 26929	3.6
10	A Photochromic Sensor Microchip for High-Performance Multiplex Metal Ion Detection. <i>Methods in Molecular Biology</i> , 2019 , 2027, 49-59	1.4
9	NANOSCALE DATA STORAGE 2009 , 193-260	
8	HIGH DENSITY ELECTRICAL DATA STORAGE 2009 , 137-191	
7	REktitelbild: Tautomeric Molecule Acts as a BunscreenEfor Metal Halide Perovskite Solar Cells (Angew. Chem. 16/2021). <i>Angewandte Chemie</i> , 2021 , 133, 9228-9228	3.6
6	Titelbild: Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami (Angew. Chem. 26/2021). <i>Angewandte Chemie</i> , 2021 , 133, 14317-14317	3.6
5	A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. <i>Angewandte Chemie</i> , 2021 , 133, 16683-16689	3.6
4	Photodetectors: Omnidirectional Photodetectors Based on Spatial Resonance Asymmetric Facade via a 3D Self-Standing Strategy (Adv. Mater. 16/2020). <i>Advanced Materials</i> , 2020 , 32, 2070128	24
3	Bioassays: Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection (Adv. Funct. Mater. 21/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870144	15.6
2	Moir Perovskite Photodetector toward High-Sensitive Digital Polarization Imaging (Adv. Energy Materials, 2021 , 11, 2170118	21.8

LIST OF PUBLICATIONS

Adjustable object floating states based on three-segment three-phase contact line evolution..

Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201665119^{11.5}