Yuri V Petrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084984/publications.pdf

Version: 2024-02-01

		304743	361022
190	1,758	22	35
papers	citations	h-index	g-index
193	193	193	496
193	193	193	430
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the Modeling of Fracture of Brittle Solids. Journal of Applied Mechanics, Transactions ASME, 1994, 61, 710-712.	2.2	121
2	Dependence of the dynamic strength on loading rate. Soviet Materials Science, 1989, 25, 153-156.	0.0	84
3	Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete. Engineering Fracture Mechanics, 2013, 110, 477-488.	4.3	83
4	Dynamics of Fracture. Foundations in Engineering Mechanics, 2000, , .	0.1	77
5	Structural macromechanics approach in dynamics of fracture. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 363-372.	3.4	61
6	Incubation time criterion and the pulsed strength of continua: Fracture, cavitation, and electrical breakdown. Doklady Physics, 2004, 49, 246-249.	0.7	59
7	Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 125-134.	8.1	52
8	The definition of characteristic times of plastic relaxation by dislocation slip and grain boundary sliding in copper and nickel. International Journal of Plasticity, 2016, 82, 97-111.	8.8	51
9	Multi-scale dynamic fracture model for quasi-brittle materials. International Journal of Engineering Science, 2012, 61, 3-9.	5 . O	48
10	Thermal Effect in Dynamic Yielding and Fracture of Metals and Alloys. Mathematics and Mechanics of Solids, 2009, 14, 72-87.	2.4	38
11	Relaxation mechanism of plastic deformation and its justification using the example of the sharp yield point phenomenon in whiskers. Physics of the Solid State, 2015, 57, 353-359.	0.6	38
12	Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth. International Journal of Solids and Structures, 2007, 44, 2371-2380.	2.7	37
13	Application of incubation time approach to simulate dynamic crack propagation. International Journal of Fracture, 2007, 146, 53-60.	2.2	37
14	Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept. Engineering Failure Analysis, 2018, 87, 15-21.	4.0	37
15	Temperature dependence of spall strength and the effect of anomalous melting temperatures in shock-wave loading. Technical Physics, 2005, 50, 1034-1037.	0.7	35
16	Structural-temporal theory of fracture as a multiscale process. Physical Mesomechanics, 2012, 15, 232-237.	1.9	32
17	High-rate deformation and fracture of fiber reinforced concrete. Journal of Applied Mechanics and Technical Physics, 2012, 53, 926-933.	0.5	30
18	Effects of strain-rate strength dependence in nanosecond load duration range. Mechanics of Solids, 2010, 45, 476-484.	0.7	29

#	Article	IF	CITATIONS
19	An invariant form of the dynamic criterion for yield of metals. Physics of the Solid State, 2002, 44, 2080-2082.	0.6	27
20	Effect of delayed crack nucleation under threshold pulse loading. Doklady Physics, 2000, 45, 617-619.	0.7	23
21	Dynamic cracking resistance of structural materials predicted from impact fracture of an aircraft alloy. Technical Physics, 2004, 49, 57-60.	0.7	23
22	Energy balance in the crack growth initiation under pulsed-load conditions. Doklady Physics, 2004, 49, 338-341.	0.7	22
23	Maximum yield strength under quasi-static and high-rate plastic deformation of metals. Physics of the Solid State, 2014, 56, 2470-2479.	0.6	22
24	Energy-Based Analysis of Ultrasonically Assisted Turning. Shock and Vibration, 2011, 18, 333-341.	0.6	21
25	Cavitation breakup of low-and high-viscosity liquids. Technical Physics, 2008, 53, 291-295.	0.7	17
26	Incubation time based testing of materials. European Journal of Mechanics, A/Solids, 2006, 25, 670-676.	3.7	16
27	Anomalous behavior of yield stress upon an increase in temperature under high strain rate conditions. Doklady Physics, 2007, 52, 691-694.	0.7	16
28	Experimental and numerical analysis of PMMA impact fracture. International Journal of Impact Engineering, 2020, 143, 103597.	5.0	16
29	Dependence of the type of fracture on temperature and strain rate. Technical Physics, 2013, 58, 989-993.	0.7	15
30	Experimental observation and numerical modelling of unstable behaviour of a fast crack velocity. Theoretical and Applied Fracture Mechanics, 2019, 101, 53-58.	4.7	14
31	Fracture of saturated concrete and rocks under dynamic loading. Engineering Fracture Mechanics, 2020, 225, 106265.	4.3	14
32	The fracture energy of materials under pulse microsecond-scale loading. Physics of the Solid State, 2003, 45, 886-889.	0.6	12
33	Incubation time approach in rock fracture dynamics. Science China: Physics, Mechanics and Astronomy, 2012, 55, 78-85.	5.1	12
34	Comparative Analysis of Dynamic Plasticity Models. Reviews on Advanced Materials Science, 2018, 57, 199-211.	3.3	12
35	On the incubation stage of fracture and structural transformations in continuous media under pulse energy injection. Mechanics of Solids, 2007, 42, 692-699.	0.7	11
36	Interrelation between the threshold characteristics of erosion and spall fracture. Technical Physics, 2010, 55, 230-235.	0.7	11

#	Article	IF	CITATIONS
37	Simulation of dynamic crack propagation under quasi-static loading. Doklady Physics, 2014, 59, 99-102.	0.7	11
38	Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters. Physics of the Solid State, 2018, 60, 244-249.	0.6	11
39	Fractal models in fracture mechanics. International Journal of Fracture, 2004, 128, 271-276.	2.2	10
40	Behavior of particle-filled polymer composite under static and dynamic loading. Engineering Fracture Mechanics, 2008, 75, 136-152.	4.3	10
41	Temporal peculiarities of brittle fracture of rocks and concrete. Frattura Ed Integrita Strutturale, 2013, 7, 112-118.	0.9	10
42	Electrical breakdown of a dielectric on the voltage pulse trailing edge: Investigation in terms of the incubation time concept. Technical Physics, 2015, 60, 1733-1737.	0.7	10
43	Instability effects of the dynamic crack propagation process. Engineering Fracture Mechanics, 2021, 242, 107438.	4.3	10
44	The incubation time criterion and the acoustic strength of sea water. Acoustical Physics, 2007, 53, 119-122.	1.0	9
45	Time dependence of the spall strength under nanosecond loading. Technical Physics, 2015, 60, 1162-1166.	0.7	9
46	Acoustic strength of water and effect of ultrasound on the liquid-vapor phase diagram. Technical Physics, 2015, 60, 753-756.	0.7	9
47	The dynamic strength of concrete and macroscopic temporal parameter characterized in fracture process. Procedia Structural Integrity, 2016, 2, 438-445.	0.8	9
48	Structural–Temporal Peculiarities of Dynamic Deformation of Nanostructured and Nanoscaled Metals. Physics of the Solid State, 2018, 60, 1813-1820.	0.6	9
49	On the Possibility of Using the Method of Sign-Perturbed Sums for the Processing of Dynamic Test Data. Vestnik St Petersburg University: Mathematics, 2018, 51, 23-30.	0.4	9
50	On the similarity of the initial stage of failure of solids and liquids under impulse loading. Doklady Physics, 2001, 46, 363-365.	0.7	8
51	The principle of equal powers for multilevel fracture in continua. Doklady Physics, 2005, 50, 448-451.	0.7	8
52	Martensitic inelasticity of TiNi-shape memory alloy under pulsed loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 105-108.	5.6	8
53	Effect of Pulse Shape on Spall Strength. Journal of Applied Mechanics and Technical Physics, 2018, 59, 303-309.	0.5	8
54	Ultrasonically assisted drilling in marble. Journal of Sound and Vibration, 2019, 460, 114880.	3.9	8

#	Article	IF	Citations
55	Problems of fracture of brittle bodies under pulse loading. Materials Science, 1996, 32, 286-295.	0.9	7
56	On the dependence of the threshold energy of small erodent particles on their geometry in erosion fracture. Mechanics of Solids, 2012, 47, 491-497.	0.7	7
57	Dynamic Strength of Limestone in Terms of the Incubation Fracture Time Criterion., 2014, 3, 778-783.		7
58	Failure-delay effect in destruction of steel samples under spalling conditions. Technical Physics, 2017, 62, 547-552.	0.7	7
59	Behavior of the grade 5 titanium alloy in different structural states in conditions of high-speed erosion. Procedia Structural Integrity, 2017, 6, 190-195.	0.8	7
60	Kinetic interpretation of the structural-time criterion for fracture. Physics of the Solid State, 2004, 46, 1051-1054.	0.6	6
61	Threshold erosion fracture in the case of oblique incidence. Journal of Friction and Wear, 2009, 30, 176-181.	0.5	6
62	Impact failure of metallic rings by a magnetic pulse technique. Technical Physics, 2011, 56, 797-802.	0.7	6
63	General effects of pulse electric breakdown of dielectric gaps and dynamic failure of continuous media. Procedia Structural Integrity, 2016, 2, 430-437.	0.8	6
64	Dynamic strength properties of the surface of an ultra-fine-grained aluminum alloy under conditions of high-speed erosion. Doklady Physics, 2016, 61, 232-234.	0.7	6
65	Dynamic fracture effects observed in a one-dimensional discrete mechanical system. E3S Web of Conferences, 2020, 157, 01020.	0.5	6
66	Effect of Impact Time Parameters on the Dynamic Strength in Spall Fracture. Physical Mesomechanics, 2021, 24, 9-13.	1.9	6
67	Dynamic fracture effects observed in discrete mechanical systems. Procedia Structural Integrity, 2020, 28, 2168-2173.	0.8	6
68	Criterion of the incubation time in the problems of pulsed fracture and electric breakdown. Technical Physics, 2004, 49, 1447-1451.	0.7	5
69	Energy approach to determination of the instantaneous damage level. Technical Physics, 2006, 51, 604-608.	0.7	5
70	Application of the incubation time criterion to the description of dynamic crack propagation. Doklady Physics, 2007, 52, 565-567.	0.7	5
71	Transient near tip fields in crack dynamics. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1309-1318.	5.1	5
72	Threshold fracture energy in solid particle erosion. Philosophical Magazine, 2013, 93, 2485-2496.	1.6	5

#	Article	IF	CITATIONS
73	Fracture, Electric Breakdown and Phase Transformations under Impact Loading., 2014, 3, 467-472.		5
74	Dynamic crack propagation: quasistatic and impact loading. Procedia Structural Integrity, 2016, 2, 389-394.	0.8	5
75	Effect of Ultrafine-Grained Structure of a Material on the Strength Characteristics of an Aluminum Alloy upon Impact Loads. Physics of the Solid State, 2019, 61, 1062-1066.	0.6	5
76	Peridynamic modelling of the dynamic crack initiation. Procedia Structural Integrity, 2020, 28, 1650-1654.	0.8	5
77	Effect of Plastic Strain Stabilization under Low-Cycle Deformation. Physical Mesomechanics, 2020, 23, 384-389.	1.9	5
78	Quantum nature and dual character of fracture dynamics in solids. Doklady Physics, 2002, 47, 85-88.	0.7	4
79	Transition between brittle and ductile erosional fracture. Doklady Physics, 2002, 47, 525-527.	0.7	4
80	Catastrophic merging of nanocracks in brittle nanocrystalline materials. Doklady Physics, 2006, 51, 69-72.	0.7	4
81	Dynamic fracture as a process of nonlinear damage wave propagation. International Journal of Fracture, 2008, 150, 227-240.	2.2	4
82	On the effect of the geometrical shape of a particle on threshold energy in erosion damage. Technical Physics, 2013, 58, 388-392.	0.7	4
83	Fracture of metallic rings during magnetic-pulse shock loading. Technical Physics, 2014, 59, 1338-1345.	0.7	4
84	Relaxation model of dynamic plastic deformation of materials. Mechanics of Solids, 2014, 49, 635-642.	0.7	4
85	Relaxation model for dynamic plastic deformation of materials. EPJ Web of Conferences, 2015, 94, 04039.	0.3	4
86	Liquid-vapor phase equilibrium conditions in an ultrasonic field. Doklady Physics, 2015, 60, 229-231.	0.7	4
87	Experimental and numerical analysis of the high-speed deformation and erosion damage of the titanium alloy VT-6. Physics of the Solid State, 2017, 59, 93-97.	0.6	4
88	Sign-perturbed sums approach for data treatment of dynamic fracture tests., 2017,,.		4
89	The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy. Journal of Materials Engineering and Performance, 2018, 27, 3054-3059.	2.5	4
90	Strength Performance of 1230 Aluminum Alloy under Tension in the Quasi-Static and Dynamic Ranges of Loading Parameters. Technical Physics, 2019, 64, 620-624.	0.7	4

#	Article	IF	CITATIONS
91	Modeling the Time Effects of Irreversible Deformation Based on the Relaxation Plasticity Model. Physics of the Solid State, 2019, 61, 935-940.	0.6	4
92	Experimental Evaluation of Structural and Temporal Characteristics of Material Fracture Based on Magnetic Pulse Loading of Ring Samples. Technical Physics, 2019, 64, 642-646.	0.7	4
93	Dynamic Strength Characteristics of Materials: Influence of the Specimen Size on Strain Rate. Technical Physics, 2019, 64, 523-526.	0.7	4
94	Instability of critical characteristics of crack propagation. Acta Mechanica, 2020, 232, 1997.	2.1	4
95	The Influence of Background Ultrasonic Field on the Strength of Adhesive Zones under Dynamic Impact Loads. Materials, 2021, 14, 3188.	2.9	4
96	Nonmonotone time dependence of dynamic fracture viscosity of solids. Doklady Physics, 2000, 45, 122-124.	0.7	3
97	Temperature dependence of the threshold impact velocity for erosion fracture. Doklady Physics, 2007, 52, 574-576.	0.7	3
98	Metal-ring stretching under magnetic-pulse shock action. Doklady Physics, 2011, 56, 452-454.	0.7	3
99	Electrical contact resistance and dynamic contact stiffness for a cluster of microcontacts: cross-property connection in the low-frequency range. Philosophical Magazine, 2012, 92, 1764-1776.	1.6	3
100	Simulation of the behavior of the cutting force during ultrasonic rotary machining of materials using structure-time fracture mechanics. Technical Physics, 2014, 59, 852-856.	0.7	3
101	Structural-time criterion of pulsed electric strength. Doklady Physics, 2014, 59, 56-58.	0.7	3
102	Fracture of Metal Ring Samples Caused by Magnetic Pulse Loading in a Wide Time Range of Durations. , 2014, 3, 686-690.		3
103	Scale and size effects in dynamic fracture of concretes and rocks. EPJ Web of Conferences, 2015, 94, 04005.	0.3	3
104	Structural-temporal approach for dynamic strength characterization of gabbro-diabase. EPJ Web of Conferences, 2015, 94, 01042.	0.3	3
105	Deformation and fracture of metal ring samples under the explosion of conductors. Procedia Structural Integrity, 2016, 2, 1002-1006.	0.8	3
106	Effect of combined high-frequency and pulse-dynamic impact on adhesive-joint strength. Doklady Physics, 2016, 61, 384-388.	0.7	3
107	Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion. Journal of Materials Engineering and Performance, 2016, 25, 3573-3579.	2.5	3
108	On some principal features of data processing of spall fracture tests. Physics of the Solid State, 2017, 59, 310-315.	0.6	3

#	Article	IF	CITATIONS
109	The structural temporal approach to dynamic and quasi-static strength of rocks and concrete. Procedia Structural Integrity, 2017, 6, 34-39.	0.8	3
110	Experimental investigation of dynamic crack propagation in PMMA plates. Procedia Structural Integrity, 2017, 6, 83-89.	0.8	3
111	Strength of the Ti–6Al–4V Titanium Alloy under Conditions of Impact and Short Pulse Loading. Physics of the Solid State, 2018, 60, 2358-2362.	0.6	3
112	Dynamic Deformation and Fracture Toughness of Pipe Steel. Procedia Structural Integrity, 2018, 13, 1811-1816.	0.8	3
113	Mode Localization and Eigenfrequency Curve Veerings of Two Overhanged Beams. Micromachines, 2021, 12, 324.	2.9	3
114	Eigenfrequency loci crossings, veerings and mode splittings of two cantilevers coupled by an overhang. Journal of Physics Communications, 2020, 4, 085010.	1.2	3
115	Estimation of the ultimate intensity of pulsed dynamic loads in crack mechanics. Doklady Physics, 2005, 50, 59-61.	0.7	2
116	Prediction of the threshold fracture energy in impact cratering mechanics. Doklady Physics, 2007, 52, 41-43.	0.7	2
117	Kinetic description of incubation processes under dynamic fracture. Doklady Physics, 2007, 52, 270-273.	0.7	2
118	A criterion for detonation initiation in gas mixtures. Doklady Physics, 2008, 53, 507-509.	0.7	2
119	Features of the dynamic fracture of one-dimensional linear chains. Doklady Physics, 2008, 53, 595-599.	0.7	2
120	Cavitation resistance of cryogenic liquids: Incubation time criterion. Technical Physics, 2009, 54, 1708-1710.	0.7	2
121	Multiscale Fracture Model for Quasi-Brittle Materials. Applied Mechanics and Materials, 2011, 82, 160-165.	0.2	2
122	Threshold Characteristics of Short Pulse Loads Causing Fracture in Concrete and Rocks. Applied Mechanics and Materials, 0, 82, 106-111.	0.2	2
123	Criterion of shock-wave initiation of detonation in solid explosives. Doklady Physics, 2012, 57, 288-290.	0.7	2
124	Structural-temporal approach to modeling of fracture dynamics in brittle media., 2013,, 101-110.		2
125	Dynamic fragmentation of solid particles interacting with a rigid barrier. Technical Physics, 2014, 59, 194-198.	0.7	2
126	Freezing of water under intense short-time shock. Doklady Physics, 2014, 59, 283-285.	0.7	2

#	Article	IF	Citations
127	Numerical implementation of the incubation time fracture criterion. Journal of Physics: Conference Series, 2015, 653, 012049.	0.4	2
128	Surface roughness investigation of ultrafine-grained aluminum alloy subjected to high speed erosion. Procedia Structural Integrity, 2016, 2, 485-492.	0.8	2
129	Determining characteristic plastic-relaxation times using micro- and nanocrystalline nickel as an example. Doklady Physics, 2016, 61, 143-146.	0.7	2
130	Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion. Physics of the Solid State, 2017, 59, 661-666.	0.6	2
131	High-rate erosion of Ti–6Al–4V ultrafine-grained titanium alloy obtained via intensive plastic torsional deformation. Physics of the Solid State, 2017, 59, 1794-1797.	0.6	2
132	Prediction of the effect of plastic-strain stabilization under cyclic deformation based on the structuralâ€'temporal approach. Doklady Physics, 2017, 62, 475-477.	0.7	2
133	Structural and temporal features of high-rate deformation of metals. Doklady Physics, 2017, 62, 102-105.	0.7	2
134	Threshold characteristics of short-pulsed loads combined with the ultrasound field causing dynamic delamination of adhesive joints. Theoretical and Applied Mechanics Letters, 2018, 8, 28-31.	2.8	2
135	Dependence of strength characteristics of aluminum alloys on strain rate under tension. Procedia Structural Integrity, 2018, 13, 886-889.	0.8	2
136	Effect of the Mass Fraction of Ice on the Strain Rate Dependence of Strength under Dynamic Fracture of Frozen Soil. Journal of Applied Mechanics and Technical Physics, 2019, 60, 533-538.	0.5	2
137	Simulation of Dynamic Crack Initiation Based on the Peridynamic Numerical Model and the Incubation Time Criterion. Technical Physics, 2021, 66, 422-425.	0.7	2
138	Stabilisation effect of strain hysteresis loop for steel 45. International Journal of Fatigue, 2021, 145, 106133.	5.7	2
139	Adhesive Joint Fracture Under Combined Pulsed and Vibrational Loading. Structural Integrity, 2020, , 100-105.	1.4	2
140	Dynamic Strength Analysis of Bitumen Binders for Asphalt Concrete Mixtures in Terms of the Fracture Incubation Time Criterion. Physical Mesomechanics, 2020, 23, 538-546.	1.9	2
141	Instabilities encountered in the dynamic crack propagation process under impact loading as a natural consequence of the dynamic fracture discreetness. Procedia Structural Integrity, 2020, 28, 1975-1980.	0.8	2
142	Fracture at the crack tip in impact loading. Soviet Materials Science, 1989, 24, 397-399.	0.0	1
143	Beschleunigungsreaktionen von Neutronen. Annalen Der Physik, 1994, 506, 118-134.	2.4	1
144	On process-zone-size fracture criteria for brittle solids. Materials Science, 1999, 35, 129-131.	0.9	1

#	Article	IF	CITATIONS
145	Fractal Fracture of an Elastic Plane Weakened by a Lunate Notch. Journal of Mathematical Sciences, 2001, 103, 247-251.	0.4	1
146	Energy estimates for phase transitions in a ball subjected to a spherically converging compression wave. Doklady Physics, 2001, 46, 291-293.	0.7	1
147	Effect of anomalous melting points upon impact loading. Doklady Physics, 2005, 50, 88-90.	0.7	1
148	Minimization of fracture-pulse energy under contact interaction. Doklady Physics, 2009, 54, 322-324.	0.7	1
149	Energy aspects of ultrasonic intensification of treatment of metals. Doklady Physics, 2010, 55, 184-185.	0.7	1
150	Metallic Ring Fracture Induced by Magnetic Pulse Loading of Short Duration., 2014, 3, 906-911.		1
151	Energy of a solid sphere under nonstationary oscillations. Science China: Physics, Mechanics and Astronomy, 2014, 57, 469-476.	5.1	1
152	Simulation of Dynamic Crack Propagation under Quasistatic Loading. Applied Mechanics and Materials, 0, 532, 337-341.	0.2	1
153	Simulation of ceramics fracture due to high rate dynamic impact. Journal of Physics: Conference Series, 2015, 653, 012050.	0.4	1
154	Threshold fracture energy in solid particle erosion: improved estimate for a rigid indenter impacting an elastic medium. Meccanica, 2015, 50, 2995-3011.	2.0	1
155	Study of Deformation and Failure of Bitumens for Asphalt Mixtures under Dynamic Loads. Key Engineering Materials, 0, 715, 43-47.	0.4	1
156	Estimate of the limit displacement wave amplitude in the dynamic problem on an out-of-plane crack. Mechanics of Solids, 2017, 52, 397-406.	0.7	1
157	The investigations of the dynamics of fracture of brittle media on the basis of experimental data and theoretical analysis. Procedia Structural Integrity, 2017, 6, 161-167.	0.8	1
158	Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach. Springer Geology, 2018, , 233-248.	0.3	1
159	Structural-time nature of the dynamic instability of the fracture process. Procedia Structural Integrity, 2018, 13, 1620-1625.	0.8	1
160	The water-saturation effect for concretes and rocks subjected to high strain rates. Procedia Structural Integrity, 2018, 13, 705-709.	0.8	1
161	Comprehensive Study of Sandstone Dynamic Strength Based on the Incubation Time Criterion. Journal of Applied Mechanics and Technical Physics, 2019, 60, 539-547.	0.5	1
162	The Strain-Rate Sensitivity of Irreversible Deformation of the Metallic Multilayer Composite GLARE. Doklady Physics, 2019, 64, 340-343.	0.7	1

#	Article	IF	CITATIONS
163	Instability of Critical and Geometric Characteristics of the Fracture Zone under Spall Conditions. Mechanics of Solids, 2020, 55, 324-331.	0.7	1
164	Effect of Dynamic Strength of a Material on Its Erosion Resistance. Physics of the Solid State, 2020, 62, 1737-1740.	0.6	1
165	Fracture of spheroplastic under static and dynamic stressing. Technical Physics, 2002, 47, 1538-1542.	0.7	0
166	Simulating the SMART1 orbiter impact on the Moon's surface. Doklady Physics, 2008, 53, 152-155.	0.7	0
167	On the effects of growth and stabilization of dynamic spall strength under short-pulse actions. Doklady Physics, 2010, 55, 524-527.	0.7	0
168	Existence of Optimal Energy Saving Parameters for Different Industrial Processes. Applied Mechanics and Materials, 2011, 82, 208-213.	0.2	0
169	Fracture of solid particles during interaction with a rigid obstacle. Doklady Physics, 2014, 59, 181-183.	0.7	O
170	Numerical simulation of ZrO2(Y2O3) ceramic plate penetration by cylindrical plunger. EPJ Web of Conferences, 2015, 94, 04056.	0.3	0
171	The strength competition effect at different strain rates. Procedia Structural Integrity, 2016, 2, 446-451.	0.8	0
172	Resolution of the threshold fracture energy paradox for solid particle erosion. Philosophical Magazine, 2016, 96, 3775-3789.	1.6	0
173	Structural-time and pulse characteristics of dynamic fracture of some construction materials. Doklady Physics, 2017, 62, 27-29.	0.7	0
174	Application of nonlocal criteria for destruction in problems with a nonuniform stress field. Physics of the Solid State, 2017, 59, 1594-1599.	0.6	0
175	The definition of flow stress under dynamic loading based on relaxation model of plasticity. Procedia Structural Integrity, 2017, 6, 77-82.	0.8	0
176	Structural-temporal approach and geometry of the fracture zone in spalling. Procedia Structural Integrity, 2017, 6, 134-139.	0.8	0
177	On the temporal peculiarities of stabilization effect under cyclic deformation for steel. Procedia Structural Integrity, 2017, 6, 265-268.	0.8	0
178	Temporal effects of dynamic yielding under high-rate loading. Procedia Structural Integrity, 2018, 13, 700-704.	0.8	0
179	Relation between structure of metallic materials and fracture properties under conditions of solid particle erosion. Procedia Structural Integrity, 2018, 13, 1359-1361.	0.8	0
180	Rupture of copper rings by a magnetic-pulse method over a wide range of loading times. Procedia Structural Integrity, 2018, 13, 1373-1377.	0.8	0

#	Article	IF	CITATIONS
181	Relations between Parameters of Fracture Processes on Different Scale Levels. Doklady Physics, 2018, 63, 459-461.	0.7	0
182	The Influence of Defects and Inclusions on Capacity for Work of Thin Plates. Structural Integrity, 2019, , 268-272.	1.4	0
183	Temporal Characteristics of Failure in High-Speed Tests. Doklady Physics, 2020, 65, 255-257.	0.7	O
184	Strain Rate Dependences of the Critical Stresses in Aluminum Al–Mg Alloys upon Impact Loads. Physics of the Solid State, 2020, 62, 1967-1972.	0.6	0
185	Delamination of the Planar Adhesion Zone under Combined Dynamic Actions. Technical Physics, 2020, 65, 68-72.	0.7	O
186	Effects of dynamic deformation and fracture in the Klein $\hat{a} \in$ Gordon stress field. Procedia Structural Integrity, 2020, 28, 1303-1309.	0.8	0
187	Calculation of fracture location in multiple spalling. Procedia Structural Integrity, 2020, 28, 2026-2031.	0.8	O
188	Spatial and Temporal Discreetness as a Crucial Property of the Dynamic Fracture Process. Mechanics of Solids, 2020, 55, 673-678.	0.7	0
189	Randomized approach to determine dynamic strength of ice. Cybernetics and Physics, 2021, , .	0.3	O
190	Structural-Temporal Peculiarities of Dynamic Deformation of Layered Materials. Materials, 2022, 15, 4271.	2.9	o