Seunghyup Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084894/publications.pdf

Version: 2024-02-01

228 papers

13,276 citations

52 h-index 24232 110 g-index

235 all docs

235 docs citations

times ranked

235

16535 citing authors

#	Article	IF	CITATIONS
1	Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222-1225.	6.0	2,440
2	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	15.6	590
3	Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Applied Physics Letters, 2004, 85, 5427-5429.	1.5	488
4	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	23.3	403
5	Controlled Doping of Vacancy-Containing Few-Layer MoS ₂ <i>via</i> Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano, 2015, 9, 12115-12123.	7.3	320
6	High Electron Mobility in Room-Temperature Discotic Liquid-Crystalline Perylene Diimides. Advanced Materials, 2005, 17, 2580-2583.	11.1	300
7	Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes. ACS Nano, 2012, 6, 159-167.	7.3	297
8	Selective Electron―or Holeâ€Transport Enhancement in Bulkâ€Heterojunction Organic Solar Cells with N― or Bâ€Doped Carbon Nanotubes. Advanced Materials, 2011, 23, 629-633.	11.1	248
9	Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Organic Electronics, 2009, 10, 791-797.	1.4	236
10	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	3.6	229
11	Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nature Materials, 2015, 14, 628-635.	13.3	229
12	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	11.1	200
13	Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond. Advanced Materials, 2020, 32, e1907539.	11.1	195
14	Interface modification of ITO thin films: organic photovoltaic cells. Thin Solid Films, 2003, 445, 342-352.	0.8	184
15	Origin of the open-circuit voltage in multilayer heterojunction organic solar cells. Applied Physics Letters, 2008, 93, .	1.5	180
16	Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60. Journal of Applied Physics, 2005, 97, 103706.	1.1	176
17	Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles. Advanced Materials, 2011, 23, 3176-3181.	11.1	176
18	Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch. Science Advances, 2018, 4, eaas9530.	4.7	171

#	Article	IF	Citations
19	Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications. IEEE Transactions on Electron Devices, 2009, 56, 696-699.	1.6	164
20	Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7, 11791.	5.8	163
21	Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Organic Electronics, 2009, 10, 1163-1169.	1.4	158
22	Optical Properties of WO ₃ /Ag/WO ₃ Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2011, 115, 3453-3459.	1.5	153
23	Optical Outcoupling Enhancement in Organic Lightâ€Emitting Diodes: Highly Conductive Polymer as a Lowâ€Index Layer on Microstructured ITO Electrodes. Advanced Materials, 2010, 22, 1849-1853.	11.1	150
24	High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). Organic Electronics, 2007, 8, 718-726.	1.4	133
25	Rigidity-Induced Delayed Fluorescence by Ortho Donor-Appended Triarylboron Compounds: Record-High Efficiency in Pure Blue Fluorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 24035-24042.	4.0	131
26	Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition. Applied Physics Letters, 2007, 90, 253511.	1.5	126
27	A 2D Titanium Carbide MXene Flexible Electrode for Highâ€Efficiency Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2000919.	11.1	122
28	Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing. Solid-State Electronics, 2007, 51, 1367-1375.	0.8	117
29	Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics. Optics Express, 2010, 18, 3404.	1.7	106
30	Highâ€Efficiency Sky Blue to Ultradeep Blue Thermally Activated Delayed Fluorescent Diodes Based on <i>Ortho</i> à€Carbazoleâ€Appended Triarylboron Emitters: Above 32% External Quantum Efficiency in Blue Devices. Advanced Optical Materials, 2018, 6, 1800385.	3.6	104
31	Exciton Dissociation and Chargeâ€Transport Enhancement in Organic Solar Cells with Quantumâ€Dot/Nâ€doped CNT Hybrid Nanomaterials. Advanced Materials, 2013, 25, 2011-2017.	11.1	103
32	A Facile Route to Efficient, Low ost Flexible Organic Lightâ€Emitting Diodes: Utilizing the High Refractive Index and Builtâ€In Scattering Properties of Industrialâ€Grade PEN Substrates. Advanced Materials, 2015, 27, 1624-1631.	11.1	101
33	Deep Red Phosphorescence of Cyclometalated Iridium Complexes by <i>o</i> -Carborane Substitution. Inorganic Chemistry, 2014, 53, 128-138.	1.9	99
34	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications, 2018, 9, 3207.	5.8	96
35	Organic flash memory on various flexible substrates for foldable and disposable electronics. Nature Communications, 2017, 8, 725.	5.8	88
36	A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics. Journal of Materials Chemistry, 2012, 22, 12695.	6.7	86

#	Article	IF	CITATIONS
37	Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Advanced Materials, 2020, 32, e2000936.	11.1	86
38	High performance organic-inorganic hybrid barrier coating for encapsulation of OLEDs. Journal of Materials Chemistry, 2011, 21, 1977-1983.	6.7	84
39	Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface. Applied Physics Letters, 2008, 93, 224106.	1.5	80
40	Biologically Inspired Organic Light-Emitting Diodes. Nano Letters, 2016, 16, 2994-3000.	4.5	78
41	Efficient Perovskite Lightâ€Emitting Diodes Using Polycrystalline Core–Shellâ€Mimicked Nanograins. Advanced Functional Materials, 2019, 29, 1902017.	7.8	76
42	Modeling the electrical characteristics of TIPS-pentacene thin-film transistors: Effect of contact barrier, field-dependent mobility, and traps. Organic Electronics, 2008, 9, 1026-1031.	1.4	75
43	Silica nanoparticle-embedded sol–gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Organic Electronics, 2012, 13, 53-57.	1.4	75
44	Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2013, 115, 36-41.	3.0	70
45	Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors. Organic Electronics, 2011, 12, 1446-1453.	1.4	68
46	Empowering Semiâ€Transparent Solar Cells with Thermalâ€Mirror Functionality. Advanced Energy Materials, 2016, 6, 1502466.	10.2	68
47	Efficient Solidâ€State Photoluminescence of Graphene Quantum Dots Embedded in Boron Oxynitride for ACâ€Electroluminescent Device. Advanced Materials, 2018, 30, e1802951.	11.1	66
48	Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells. Solar Energy Materials and Solar Cells, 2012, 101, 170-175.	3.0	65
49	Thermal transport properties of thin films of small molecule organic semiconductors. Applied Physics Letters, 2005, 87, 241908.	1.5	63
50	Homoleptic Tris-Cyclometalated Iridium Complexes with Substituted <i>o</i> -Carboranes: Green Phosphorescent Emitters for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 909-917.	1.9	63
51	Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Materials, 2017, 9, e411-e411.	3.8	60
52	Highly transparent organic light-emitting diodes with a metallic top electrode: the dual role of a Cs_2CO_3 layer. Optics Express, 2011, 19, 1113.	1.7	58
53	Poly(amide-imide) materials for transparent and flexible displays. Science Advances, 2018, 4, eaau1956.	4.7	57
54	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	3.0	53

#	Article	IF	CITATIONS
55	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	11.7	53
56	Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nature Communications, 2020, 11, 2732.	5.8	52
57	Towards Gigahertz Operation: Ultrafast Low Turnâ€on Organic Diodes and Rectifiers Based on C ₆₀ and Tungsten Oxide. Advanced Materials, 2011, 23, 644-648.	11.1	50
58	Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Materials and Solar Cells, 2017, 161, 338-346.	3.0	49
59	Small Molecule Chemisorption on Indiumâ^'Tin Oxide Surfaces:Â Enhancing Probe Molecule Electron-Transfer Rates and the Performance of Organic Light-Emitting Diodesâ€. Journal of Physical Chemistry B, 2006, 110, 25191-25202.	1.2	48
60	Vinyl-Type Polynorbornenes with Triarylamine Side Groups: A New Class of Soluble Hole-Transporting Materials for OLEDs. Macromolecules, 2009, 42, 6840-6843.	2.2	46
61	Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids. Journal of Physical Chemistry C, 2011, 115, 607-612.	1.5	46
62	Photo-physics of PTB7, PCBM and ICBA based ternary solar cells. Organic Electronics, 2016, 34, 111-117.	1.4	46
63	Organic wrinkles for energy efficient organic light emitting diodes. Organic Electronics, 2015, 26, 273-278.	1.4	45
64	Quenchingâ€Resistant Solidâ€State Photoluminescence of Graphene Quantum Dots: Reduction of Ï€â^Ï€ Stacking by Surface Functionalization with POSS, PEG, and HDA. Advanced Functional Materials, 2021, 31, 2102741.	7.8	45
65	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	8.2	43
66	Polynorbornene Copolymer with Side-Chain Iridium(III) Emitters and Carbazole Hosts: A Single Emissive Layer Material for Highly Efficient Electrophosphorescent Devices. Macromolecules, 2013, 46, 674-682.	2.2	42
67	Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nature Communications, 2021, 12, 2864.	5.8	42
68	Poly(benzodithiophene) Homopolymer for High-Performance Polymer Solar Cells with Open-Circuit Voltage of Near 1 V: A Superior Candidate To Substitute for Poly(3-hexylthiophene) as Wide Bandgap Polymer. Chemistry of Materials, 2015, 27, 2653-2658.	3.2	41
69	Efficient Large-Area Transparent OLEDs Based on a Laminated Top Electrode with an Embedded Auxiliary Mesh. ACS Photonics, 2017, 4, 1114-1122.	3.2	41
70	Vinyl-type polynorbornene with 9.98^{2} - $(1.18^{2}$ -biphenyl)- 4.48^{2} -diylbis- 9 H-carbazole side groups as a host materifor highly efficient green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, $2011, 21, 5422$.	al 6.7	40
71	Versatile Multilayer Transparent Electrodes for ITO-Free and Flexible Organic Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1656-1664.	1.9	39
72	Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. Journal of Materials Chemistry C, 2018, 6, 5444-5452.	2.7	39

#	Article	IF	Citations
73	Synthesis and characterization of cyclopentadithiopheneâ€based low bandgap copolymers containing electronâ€deficient benzoselenadiazole derivatives for photovoltaic devices. Journal of Polymer Science Part A, 2010, 48, 1423-1432.	2.5	38
74	Tungsten oxide as a buffer layer inserted at the SnO2/p-a-SiC interface of <i>pin</i> -type amorphous silicon based solar cells. Applied Physics Letters, 2010, 96, .	1.5	38
75	Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes. Applied Physics Letters, 2009, 95, 053301.	1.5	37
76	A systematic approach to reducing angular color shift in cavity-based organic light-emitting diodes. Organic Electronics, 2017, 48, 348-356.	1.4	37
77	Enhancement of Reverse Intersystem Crossing in Chargeâ€Transfer Molecule through Internal Heavy Atom Effect. Advanced Functional Materials, 2021, 31, 2104646.	7.8	37
78	Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: utilizing the tunable absorption asymmetry. Optics Express, 2010, 18, A513.	1.7	36
79	ITO-free down-conversion white organic light-emitting diodes with structured color conversion layers for enhanced optical efficiency and color rendering. Organic Electronics, 2012, 13, 3145-3153.	1.4	36
80	Improvement of On–Off-Current Ratio in \$ hbox{TiO}_{m x}\$ Active-Channel TFTs Using \$hbox{N}_{2} hbox{O}\$ Plasma Treatment. IEEE Electron Device Letters, 2009, 30, 362-364.	2.2	34
81	Electrical-Stress-Induced Threshold Voltage Instability in Solution-Processed ZnO Thin-Film Transistors: An Experimental and Simulation Study. IEEE Transactions on Electron Devices, 2011, 58, 1995-2002.	1.6	33
82	Highly Conductive, Bendable, Embedded Ag Nanoparticle Wire Arrays Via Convective Selfâ€Assembly: Hybridization into Ag Nanowire Transparent Conductors. Advanced Functional Materials, 2015, 25, 3888-3898.	7.8	33
83	Toward Highâ€Output Organic Vertical Field Effect Transistors: Key Design Parameters. Advanced Functional Materials, 2016, 26, 6888-6895.	7.8	33
84	Highly Stable AllnZnSnO and InZnO Double-Layer Oxide Thin-Film Transistors With Mobility Over 50 \$ext{cm}^{2}/ext{V} cdot ext{s}\$ for High-Speed Operation. IEEE Electron Device Letters, 2018, 39, 508-511.	2.2	33
85	Organic/inorganic multilayer thin film encapsulation via initiated chemical vapor deposition and atomic layer deposition for its application to organic solar cells. Korean Journal of Chemical Engineering, 2017, 34, 892-897.	1.2	32
86	Blurâ€Free Outcoupling Enhancement in Transparent Organic Light Emitting Diodes:ÂA Nanostructure Extracting Surface Plasmon Modes. Advanced Optical Materials, 2013, 1, 687-691.	3 . 6	31
87	New n-Type <formula formulatype="inline"><tex Notation="TeX">\$hbox{TiO}_{2}\$</tex </formula> Transparent Active Channel TFTs Fabricated With a Solution Process. IEEE Electron Device Letters, 2008, 29, 724-727.	2.2	29
88	The stability of normal vs. inverted organic solar cells under highly damp conditions: Comparison with the same interfacial layers. Solar Energy Materials and Solar Cells, 2014, 128, 41-47.	3.0	29
89	A Lowâ€Voltage Organic Complementary Inverter with High Operation Stability and Flexibility Using an Ultrathin iCVD Polymer Dielectric and a Hybrid Encapsulation Layer. Advanced Electronic Materials, 2016, 2, 1500385.	2.6	29
90	Spontaneous Generation of a Molecular Thin Hydrophobic Skin Layer on a Sub-20 nm, High- <i>k</i> Polymer Dielectric for Extremely Stable Organic Thin-Film Transistor Operation. ACS Applied Materials & Amp; Interfaces, 2019, 11, 29113-29123.	4.0	29

#	Article	IF	Citations
91	Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4749-4754.	4.0	29
92	Design of ultrathin OLEDs having oxide-based transparent electrodes and encapsulation with sub-mm bending radius. Organic Electronics, 2020, 82, 105704.	1.4	29
93	Builtâ€In Haze Glassâ€Fabric Reinforced Siloxane Hybrid Film for Efficient Organic Lightâ€Emitting Diodes (OLEDs). Advanced Functional Materials, 2018, 28, 1802944.	7.8	28
94	Ga-doped ZnO as an electron transport layer for PffBT4T-2OD: PC70BM organic solar cells. Organic Electronics, 2017, 43, 207-213.	1.4	27
95	Sticker-Type Hybrid Photoplethysmogram Monitoring System Integrating CMOS IC With Organic Optical Sensors. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 50-59.	2.7	26
96	Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes. Organic Electronics, 2017, 46, 139-144.	1.4	25
97	Towards Colorless Transparent Organic Transistors: Potential of Benzothieno[3,2â€ <i>b</i>]benzothiopheneâ€Based Wideâ€Gap Semiconductors. Advanced Materials, 2014, 26, 3105-3110.	, 11.1	24
98	Performance Improvement of N-Type \$hbox{TiO}_{x}\$ Active-Channel TFTs Grown by Low-Temperature Plasma-Enhanced ALD. IEEE Electron Device Letters, 2009, 30, 739-741.	2.2	23
99	Blue emission at atomically sharp $1D$ heterojunctions between graphene and h-BN. Nature Communications, 2020, 11 , 5359.	5.8	23
100	Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stressâ€Relieving Bilayer Structure. Advanced Materials Technologies, 2020, 5, 2000494.	3.0	23
101	Triarylboron-based TADF emitters with perfluoro substituents: high-efficiency OLEDs with a power efficiency over 100 lm W ^{â°'1} . Journal of Materials Chemistry C, 2020, 8, 4253-4263.	2.7	23
102	Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 1821-1830.	8.8	23
103	Integrated organic photovoltaic modules with a scalable voltage output. Applied Physics Letters, 2006, 89, 233516.	1.5	22
104	Improved Electrical Characteristics of Amorphous Oxide TFTs Based on \$hbox{TiO}_{x}\$ Channel Layer Grown by Low-Temperature MOCVD. IEEE Electron Device Letters, 2008, 29, 1319-1321.	2.2	22
105	Vinylâ€Type Polynorbornenes with Pendant PCBM: A Novel Acceptor for Organic Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1119-1125.	2.0	22
106	Blue TADF Emitters Based on <i>B</i> Heterotriangulene Acceptors for Highly Efficient OLEDs with Reduced Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 45778-45788.	4.0	22
107	Soluble polynorbornenes with pendant carbazole derivatives as host materials for highly efficient blue phosphorescent organic lightâ€emitting diodes. Journal of Polymer Science Part A, 2012, 50, 2356-2365.	2.5	21
108	High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors. ACS Applied Materials & Diterfaces, 2016, 8, 10937-10945.	4.0	21

7

#	Article	IF	CITATIONS
109	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Materials Horizons, 2019, 6, 2143-2151.	6.4	21
110	Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering. Solar Energy, 2020, 201, 499-507.	2.9	21
111	Importance of Purcell factor for optimizing structure of organic light-emitting diodes. Optics Express, 2019, 27, 11057.	1.7	20
112	Synthesis and hole-transporting properties of vinyl-type polynorbornenes with ethyl ester linked triarylamine side groups. Synthetic Metals, 2010, 160, 2000-2007.	2.1	19
113	Amorphous Si Rear Schottky Junction Solar Cell With a LiF/Al Back Electrode. IEEE Transactions on Electron Devices, 2011, 58, 3048-3052.	1.6	19
114	Overcoming the "retention vs. voltage―trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes. Organic Electronics, 2013, 14, 3260-3266.	1.4	19
115	Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel. Optics Express, 2013, 21, 10358.	1.7	19
116	Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer. Advanced Energy Materials, 2014, 4, 1301345.	10.2	19
117	Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26, 334-339.	1.4	19
118	Stabilizing color shift of tandem white organic light-emitting diodes. Journal of Industrial and Engineering Chemistry, 2019, 69, 414-421.	2.9	19
119	A Comparative Study of Charge Mobility Measurements in a Diamine and in a Hexaazatrinaphthylene Using Different Techniques. Molecular Crystals and Liquid Crystals, 2008, 481, 80-93.	0.4	18
120	Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes. Solar Energy Materials and Solar Cells, 2015, 137, 34-43.	3.0	18
121	Comprehensive and Comparative Analysis of Photoinduced Charge Generation, Recombination Kinetics, and Energy Losses in Fullerene and Nonfullerene Acceptor-Based Organic Solar Cells. ACS Applied Materials & Diterfaces, 2020, 12, 45083-45091.	4.0	18
122	Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle. Applied Physics Letters, 2012, 100, 233303.	1.5	17
123	Doping-Free Inverted Top-Emitting Organic Light-Emitting Diodes With High Power Efficiency and Near-Ideal Emission Characteristics. IEEE Transactions on Electron Devices, 2012, 59, 159-166.	1.6	17
124	Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells. Organic Electronics, 2013, 14, 1477-1482.	1.4	17
125	Biâ€directional organic lightâ€emitting diodes with nanoparticleâ€enhanced light outcoupling. Laser and Photonics Reviews, 2013, 7, 1079-1087.	4.4	17
126	Impact of the number of o-carboranyl ligands on the photophysical and electroluminescent properties of iridium(<scp>iii</scp>) cyclometalates. Journal of Materials Chemistry C, 2017, 5, 3024-3034.	2.7	17

#	Article	IF	CITATIONS
127	Blue Graphene Quantum Dots with High Color Purity by Controlling Subdomain Formation for Light-Emitting Devices. ACS Applied Nano Materials, 2020, 3, 6469-6477.	2.4	17
128	Temperature-Controlled Direct Imprinting of Ag Ionic Ink: Flexible Metal Grid Transparent Conductors with Enhanced Electromechanical Durability. Scientific Reports, 2017, 7, 11220.	1.6	16
129	Mitigating the Trade-off between Triplet Harvesting and Roll-off by Opening a Dexter-Type Channel in OLEDs. Journal of Physical Chemistry C, 2019, 123, 18283-18293.	1.5	16
130	Naphthalene Benzimidazole Based Neutral Ir(III) Emitters for Deep Red Organic Light-Emitting Diodes. Inorganic Chemistry, 2020, 59, 12461-12470.	1.9	16
131	Toward Ultraâ€Efficient OLEDs: Approaches Based on Low Refractive Index Materials. Advanced Optical Materials, 2021, 9, 2002182.	3.6	16
132	Fullereneâ€Derivativeâ€Embedded Nanogap Fieldâ€Effectâ€Transistor and Its Nonvolatile Memory Application. Small, 2010, 6, 1617-1621.	5.2	15
133	Digitalâ€Mode Organic Vaporâ€Jet Printing (Dâ€OVJP): Advanced Jetâ€onâ€Demand Control of Organic Thinâ€Fili Deposition. Advanced Materials, 2012, 24, 2857-2862.	m 11.1	15
134	Diffracted near field of hollow optical fibre for a novel atomic funnel. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 364-370.	1.4	14
135	Charge carrier dynamics in PffBT4T-2OD: PCBM organic solar cells. Organic Electronics, 2018, 62, 441-447.	1.4	14
136	Optimal flickering light stimulation for entraining gamma waves in the human brain. Scientific Reports, 2021, 11, 16206.	1.6	14
137	Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design. Optics Express, 2015, 23, 27306.	1.7	13
138	Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High- \$kappa\$ HfLaO Hybrid Gate Dielectric. IEEE Electron Device Letters, 2010, , .	2.2	12
139	Nanogap Electrode Fabrication for a Nanoscale Device by Volumeâ€Expanding Electrochemical Synthesis. Small, 2011, 7, 2210-2216.	5.2	12
140	Improvement of the performance of inverted polymer solar cells with a fluorine-doped tin oxide electrode. Current Applied Physics, 2011, 11, S175-S178.	1.1	12
141	Photoactive Memory by a Si-Nanowire Field-Effect Transistor. ACS Nano, 2012, 6, 1449-1454.	7.3	12
142	Efficient organic photomemory with photography-ready programming speed. Scientific Reports, 2016, 6, 30536.	1.6	12
143	Simultaneously enhanced device efficiency, stabilized chromaticity of organic light emitting diodes with lambertian emission characteristic by random convex lenses. Nanotechnology, 2016, 27, 075202.	1.3	12
144	Columnar-Structured Low-Concentration Donor Molecules in Bulk Heterojunction Organic Solar Cells. ACS Omega, 2018, 3, 929-936.	1.6	12

#	Article	IF	Citations
145	Organic–Inorganic Hybrid Approach to Pulse Oximetry Sensors with Reliability and Low Power Consumption. ACS Photonics, 2021, 8, 3564-3572.	3.2	12
146	Ultralong persistent luminescence from carbon dots. Light: Science and Applications, 2022, 11, 132.	7.7	12
147	Polarizer-free, high-contrast inverted top-emitting organic light emitting diodes: effect of the electrode structure. Optics Express, 2012, 20, 1816.	1.7	11
148	Controlling the Threshold Voltage of Organic Thin-Film Transistors by Transition Metal Oxides. IEEE Electron Device Letters, 2013, 34, 1014-1016.	2.2	11
149	Polynorbornenes with pendant PCBM as an acceptor for OPVs: Ring-opening metathesis versus vinyl-addition polymerization. European Polymer Journal, 2014, 51, 37-44.	2.6	11
150	Photoinduced Memory with Hybrid Integration of an Organic Fullerene Derivative and an Inorganic Nanogapâ€Embedded Fieldâ€Effect Transistor for Lowâ€Voltage Operation. Advanced Materials, 2011, 23, 3326-3331.	11.1	10
151	Enhanced and balanced efficiency of white bi-directional organic light-emitting diodes. Optics Express, 2013, 21, 28040.	1.7	10
152	Effect of Laser-Induced Direct Micropatterning on Polymer Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47143-47152.	4.0	10
153	Organic Sub-Bandgap Schottky Barrier Photodetectors with Near-Infrared Coherent Perfect Absorption. ACS Photonics, 2021, 8, 2618-2625.	3.2	10
154	High-Performance Pentacene Thin-Film Transistors Fabricated by Printing Technology. IEEE Electron Device Letters, 2011, 32, 1454-1456.	2.2	9
155	Straight-forward control of the degree of micro-cavity effects in organic light-emitting diodes based on a thin striped metal layer. Organic Electronics, 2013, 14, 2444-2450.	1.4	9
156	Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers. Journal of Luminescence, 2015, 162, 180-184.	1.5	9
157	Tuning the electrode work function via a vapor-phase deposited ultrathin polymer film. Journal of Materials Chemistry C, 2016, 4, 831-839.	2.7	9
158	Spontaneous Additive Nanopatterning from Solution Route Using Selective Wetting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26501-26509.	4.0	9
159	Impact of Boron Acceptors on the TADF Properties of Ortho-Donor-Appended Triarylboron Emitters. Frontiers in Chemistry, 2020, 8, 538.	1.8	9
160	Impact of boryl acceptors in para-acridine-appended triarylboron emitters on blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2021, 188, 109224.	2.0	9
161	Organic Lightâ€Emitting Diodes: Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond (Adv. Mater. 35/2020). Advanced Materials, 2020, 32, 2070266.	11.1	8
162	A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chemical Engineering Journal, 2022, 431, 134074.	6.6	8

#	Article	IF	Citations
163	High-density organic photovoltaic modules: Mask-free fabrication using nozzle jet printing and oblique deposition. Solar Energy Materials and Solar Cells, 2014, 120, 561-565.	3.0	7
164	P-9: High Performance Back Channel Etch Metal Oxide Thin-film Transistor with Double Active Layers. Digest of Technical Papers SID International Symposium, 2016, 47, 1151-1154.	0.1	7
165	Organic Vaporâ€Jet Printing with Reduced Heat Transfer for Fabrication of Flexible Organic Devices. Advanced Materials Technologies, 2019, 4, 1800332.	3.0	7
166	High-Performance Pentacene Thin-Film Transistors Fabricated by Organic Vapor-Jet Printing. IEEE Electron Device Letters, 2010, , .	2.2	6
167	Photo-Curable Sol-Gel Hybrid Film as a Dielectric Layer by a Thiol-ene Reaction in Air or N2 for Organic Thin Film Transistors. Electrochemical and Solid-State Letters, 2012, 15, G13.	2.2	6
168	Stability enhancement of normal-geometry organic solar cells in a highly damp condition: A study on the effect of top electrodes. Organic Electronics, 2015, 25, 31-36.	1.4	6
169	Dual optical role of low-index injection layers for efficient polarizer-free high contrast-ratio organic light-emitting diodes. Optics Express, 2015, 23, 10259.	1.7	6
170	Fabrication of Vertical Silicon Nanotube Array Using Spacer Patterning Technique and Metal-Assisted Chemical Etching. IEEE Nanotechnology Magazine, 2016, , 1-1.	1.1	6
171	Area-selective external light extraction for metal bus equipped large area transparent organic light-emitting diodes. Optics Express, 2016, 24, 5356.	1.7	6
172	Role of Electronic States and Their Coupling on Radiative Losses of Open-Circuit Voltage in Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60279-60287.	4.0	6
173	Organic photovoltaic cells containing discotic liquid crystalline phthalocyanines. , 2004, 5215, 71.		5
174	Bilayer Source/Drain Electrodes Self-Aligned With Fluoropolymer Dielectrics for Stable High-Performance Organic TFTs. IEEE Electron Device Letters, 2011, 32, 1137-1139.	2.2	5
175	Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device., 2016, 2016, 2014-2017.		5
176	A highly bendable thin film encapsulation by the modulation of thermally induced interfacial residual stress. Applied Surface Science, 2022, 598, 153874.	3.1	5
177	Improved lifetime of highly flexible OLEDs based on multilayered transparent electrodes with enhanced barrier performance. Journal of the Society for Information Display, 2011, 19, 597-601.	0.8	4
178	Polarizer-free, high-contrast-ratio organic light-emitting diodes utilizing microcavity structures and neutral-density filters. Journal of Information Display, 2014, 15, 195-199.	2.1	4
179	Realization of Flexible Ultraviolet Organic Lightâ€Emitting Diodes: Key Design Issues. Advanced Photonics Research, 2021, 2, 2100108.	1.7	4
180	Integrated organic photovoltaic modules. Proceedings of SPIE, 2007, , .	0.8	3

#	Article	IF	Citations
181	Solar Cells: Exciton Dissociation and Chargeâ€Transport Enhancement in Organic Solar Cells with Quantumâ€Dot/Nâ€doped CNT Hybrid Nanomaterials (Adv. Mater. 14/2013). Advanced Materials, 2013, 25, 2104-2104.	11.1	3
182	Highly transparent thin-film transistors using wide-bandgap organic semiconductors and multilayer transparent electrodes. Journal of Information Display, 2014, 15, 59-63.	2.1	3
183	Feature Issue Introduction: Light, Energy and the Environment, 2014. Optics Express, 2015, 23, A764.	1.7	3
184	P-67: Wide Bandwidth Reflective Microshutter Blind Panel for Transparent Organic Light-Emitting Diode Display. Digest of Technical Papers SID International Symposium, 2016, 47, 1389-1391.	0.1	3
185	22.3 A 141ÂμW sensor SoC on OLED/OPD substrate for SpO2/ExG monitoring sticker. , 2016, , .		3
186	Feature issue introduction: light, energy and the environment, 2015. Optics Express, 2016, 24, A981.	1.7	3
187	Graphene Quantum Dots: Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070233.	11.1	3
188	Practically Viable Approach to Efficient and Reliable Semitransparent Flexible Organic Solar Cells: Faceâ€Seal Encapsulation Embedded with Tailored Colorâ€Control Functionality. Advanced Energy and Sustainability Research, 2020, 1, 2000020.	2.8	3
189	Vacuum Deposition. , 2019, , 1-24.		3
190	Micromolding fabrication of biocompatible dry micro-pyramid array electrodes for wearable biopotential monitoring. Flexible and Printed Electronics, 2021, 6, 045008.	1.5	3
191	Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement. Chemical Engineering Journal, 2022, 441, 135991.	6.6	3
192	Modeling of organic photovoltaic cells with large fill factor and high efficiency., 2004, 5520, 110.		2
193	High performance organic field-effect transistors using high-Κ dielectrics grown by atomic layer deposition (ALD). Proceedings of SPIE, 2007, , .	0.8	2
194	Effect of carrier gas temperature on pentacene thin film formation by organic vapor-jet printing techniques. Thermochimica Acta, 2012, 542, 74-79.	1.2	2
195	Synthesis and Characterization of an Anthracene-Based Low Band Gap Polymer for Photovoltaic Devices. Journal of Nanoscience and Nanotechnology, 2014, 14, 6422-6426.	0.9	2
196	Organic vapor-jet-based route for solvent-free additive formation of oxide semiconductors. Organic Electronics, 2017, 43, 235-239.	1.4	2
197	ZnO in organic electronics. , 2021, , 697-715.		2
198	22â€4: Invited Paper: OLEDs for Wearables: From Form Factor Engineering to Healthcare Applications. Digest of Technical Papers SID International Symposium, 2021, 52, 274-277.	0.1	2

#	Article	IF	CITATIONS
199	Importance of Simulation Studies in Analysis of Thin Film Transistors Based on Organic and Metal Oxide Semiconductors. , 0, , .		1
200	Transparent OLEDs: Blur-Free Outcoupling Enhancement in Transparent Organic Light Emitting Diodes:ÂA Nanostructure Extracting Surface Plasmon Modes (Advanced Optical Materials 10/2013). Advanced Optical Materials, 2013, 1, 686-686.	3.6	1
201	Effects of Hole and Electron Transporting Interlayers for Inverted Polymer Solar Cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 6028-6032.	0.9	1
202	Organic Electronics: Towards Colorless Transparent Organic Transistors: Potential of Benzothieno[3,2â€ <i>b</i>]benzothiopheneâ€Based Wideâ€Gap Semiconductors (Adv. Mater. 19/2014). Advanced Materials, 2014, 26, 3163-3163.	11.1	1
203	Identification of a multi-stack structure of graphene electrodes doped layer-by-layer with benzimidazole and its implication for the design of optoelectronic devices. Optics Express, 2021, 29, 23131.	1.7	1
204	Improving the Efficiency of Flexible Organic Light-emitting Diodes via Alternating High- and Low-index Layers. , $2016, , .$		1
205	Enhancement of Reverse Intersystem Crossing in Chargeâ€Transfer Molecule through Internal Heavy Atom Effect (Adv. Funct. Mater. 50/2021). Advanced Functional Materials, 2021, 31, .	7.8	1
206	Molecular Multilayer Organic Solar Cells with Large Excitonic Diffusion Length. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
207	Fabrication and Characterization of SiOx/Parylene and SiNx/Parylene Thin Film Encapsulation Layers. , 2007, , 933.		0
208	Highâ€efficiency organic lightâ€emitting diodes(OLEDs) with optimized multilayer transparent electrodes. Journal of Information Display, 2010, 11, 52-56.	2.1	0
209	Organic/inorganic hybrid gate dielectric for high-performance and low-power organic thin-film transistors. , 2010, , .		0
210	Outcoupling enhancement in OLEDs: opportunity from high-index and low-index layers. , 2014, , .		O
211	Lightâ€Emitting Diodes: Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer (Adv. Energy) Tj E	ΓQφΦ.2 Ο.7	78 4 814 rgBT
212	Trans-scale optical simulation for OLEDs involving scattering substrates. , 2015, , .		0
213	Feasibility of & amp; \pm x2018; Radiative transfer theory & amp; \pm x2019; for simulation of organic light-emitting diodes with scattering media., 2015,,.		0
214	Organic thin film photomemory with isolated photo-active charge storage. , 2015, , .		0
215	Organic Electronics: Toward Highâ€Output Organic Vertical Field Effect Transistors: Key Design Parameters (Adv. Funct. Mater. 38/2016). Advanced Functional Materials, 2016, 26, 7023-7023.	7.8	0
216	31-1: Novel Laminated OLEDs Using a Non-Metal Transparent Top Electrode with an Embedded Metal Mesh. Digest of Technical Papers SID International Symposium, 2016, 47, 389-392.	0.1	0

#	Article	IF	CITATIONS
217	Flexible organic non-volatile memory with long retention. , 2018, , .		О
218	Stretchable OLEDs: Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stressâ€Relieving Bilayer Structure (Adv. Mater. Technol. 11/2020). Advanced Materials Technologies, 2020, 5, 2070068.	3.0	0
219	Electrode Engineering for Outcoupling Enhancement in OLEDs. , 2011, , .		0
220	Light Management Toward Efficient Organic Solar Cells. , 2013, , .		0
221	Towards color-stable, outcoupling-enhanced white OLEDs – effect of transparent electrodes. , 2015, , .		0
222	Highly Flexible & Divides and Ultrathin Plastic Films., 2015,,.		0
223	Trans-scale global optimization of OLEDs on substrates with bulk scattering via radiative transfer theory. , $2015, , .$		O
224	Down-conversion based near-infrared organic light-emitting diodes with high efficiency and low roll-off. , 2019, , .		0
225	Feature issue introduction: Optical Devices and Materials for Solar Energy and Solid-state Lighting (PVLED) 2019. Optics Express, 2020, 28, 16027.	1.7	0
226	Realization of Flexible Ultraviolet Organic Light-Emitting Diodes: Design Considerations., 2020,,.		0
227	Double-Gate and Body-Contacted Nonvolatile Oxide Memory Thin-Film Transistors for Fast Erase Programming. IEEE Transactions on Electron Devices, 2022, 69, 120-126.	1.6	0
228	Organic-Based Biophotonic Devices. , 2022, , 311-345.		0