Rosario HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084839/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The complemented mutant ΔBcstc7, in the STC7 of Botrytis cinerea led to the characterization of 11,12,13-tri-nor-eremophilenols derivatives. Phytochemistry, 2022, 193, 113003.	2.9	2
2	Pharmacological Potential of Lathyrane-Type Diterpenoids from Phytochemical Sources. Pharmaceuticals, 2022, 15, 780.	3.8	7
3	Effects of classical PKC activation on hippocampal neurogenesis and cognitive performance: mechanism of action. Neuropsychopharmacology, 2021, 46, 1207-1219.	5.4	13
4	Impairment of botrydial production in Botrytis cinerea allows the isolation of undescribed polyketides and reveals new insights into the botcinins biosynthetic pathway. Phytochemistry, 2021, 183, 112627.	2.9	7
5	Phorbol Diesters and 12-Deoxy-16-hydroxyphorbol 13,16-Diesters Induce TGFα Release and Adult Mouse Neurogenesis. Journal of Medicinal Chemistry, 2021, 64, 6070-6084.	6.4	13
6	Bond reactivity indices approach analysis of the [2+2] cycloaddition of jatrophane skeleton diterpenoids from Euphorbia gaditana Coss to tetracyclic gaditanone. Phytochemistry, 2020, 180, 112519.	2.9	5
7	Synthesis of Degraded Limonoid Analogs as New Antibacterial Scaffolds against Staphylococcus aureus. Antibiotics, 2020, 9, 488.	3.7	4
8	A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death and Disease, 2020, 11, 262.	6.3	17
9	Lathyrane, Premyrsinane, and Related Diterpenes from <i>Euphorbia boetica</i> : Effect on in Vitro Neural Progenitor Cell Proliferation. Journal of Natural Products, 2019, 82, 2517-2528.	3.0	15
10	ELAC (3,12â€diâ€ <i>O</i> â€acetylâ€8â€ <i>O</i> â€tigloilingol), a plantâ€derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation. British Journal of Pharmacology, 2017, 174, 2373-2392.	5.4	26
11	The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the Bcbot4 null mutant of Botrytis cinerea. Organic and Biomolecular Chemistry, 2017, 15, 5357-5363.	2.8	8
12	Gaditanone, a Diterpenoid Based on an Unprecedented Carbon Skeleton Isolated from <i>Euphorbia gaditana</i> . Journal of Natural Products, 2017, 80, 2161-2165.	3.0	30
13	Mild Epoxidation of Allylic Alcohols Catalyzed by Titanium(III) Complexes: Selectivity and Mechanism. ACS Omega, 2017, 2, 3083-3090.	3.5	12
14	Lathyrane Diterpenes from the Latex of Euphorbia laurifolia. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
15	Genetic and Molecular Basis of Botrydial Biosynthesis: Connecting Cytochrome P450-Encoding Genes to Biosynthetic Intermediates. ACS Chemical Biology, 2016, 11, 2838-2846.	3.4	30
16	Efficient O -Acylation of Alcohols and Phenol Using Cp2 TiCl as a Reaction Promoter. European Journal of Organic Chemistry, 2016, 2016, 3584-3591.	2.4	8
17	12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation. International Journal of Neuropsychopharmacology, 2016, 19, pyv085.	2.1	26
18	Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols. Organic and Biomolecular Chemistry, 2016, 14, 2731-2741.	2.8	17

#	Article	IF	CITATIONS
19	Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in <i>Botrytis cinerea</i> Revealed New Sporogenic (+)-4- <i>Epi</i> eremophil-9-en-11-ols. ACS Chemical Biology, 2016, 11, 1391-1400.	3.4	20
20	Unexpected Mild Protection of Alcohols as 2â€∢i>Oâ€THF and 2â€ <i>O</i> â€THP Ethers Catalysed by Cp ₂ TiCl Reveal an Intriguing Role of the Solvent in the Singleâ€Electron Transfer Reaction. European Journal of Organic Chemistry, 2015, 2015, 6333-6340.	2.4	13
21	Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Natural Product Reports, 2015, 32, 1236-1248.	10.3	58
22	Diastereoselective and enantioselective preparation of nor-mevaldic acid surrogates through desymmetrisation methodology. Enantioselective synthesis of (+) and (â^') nor-mevalonic lactones. Tetrahedron, 2015, 71, 7531-7538.	1.9	3
23	Titanium carbenoid-mediated cyclopropanation of allylic alcohols: selectivity and mechanism. Organic and Biomolecular Chemistry, 2015, 13, 6325-6332.	2.8	11
24	nor-Mevaldic acid surrogates as selective antifungal agent leads against Botrytis cinerea. Enantioselective preparation of 4-hydroxy-6-(1-phenylethoxy)tetrahydro-2H-pyran-2-one. Bioorganic and Medicinal Chemistry, 2015, 23, 3379-3387.	3.0	4
25	The synthesis of 3-hydroxy-2,4,8-trimethyldec-8-enolides and an approach to 3,4-dihydroxy-2,4,6,8-tetramethyldec-8-enolide. Organic and Biomolecular Chemistry, 2015, 13, 465-476.	2.8	3
26	Exploring mutasynthesis to increase structural diversity in the synthesis of highly oxygenated polyketide lactones. Organic and Biomolecular Chemistry, 2014, 12, 5304-5310.	2.8	10
27	Biologically active diterpenes containing a gem-dimethylcyclopropane subunit: an intriguing source of PKC modulators. Natural Product Reports, 2014, 31, 940-952.	10.3	60
28	The Asymmetric Total Synthesis of Cinbotolide: A Revision of the Original Structure. Journal of Organic Chemistry, 2014, 79, 11349-11358.	3.2	11
29	Chemical genetics strategies for identification of molecular targets. Phytochemistry Reviews, 2013, 12, 895-914.	6.5	6
30	A Shared Biosynthetic Pathway for Botcinins and Botrylactones Revealed through Gene Deletions. ChemBioChem, 2013, 14, 132-136.	2.6	13
31	Stereoselective Synthesis and Absolute Configuration Determination of Xylariolide A. European Journal of Organic Chemistry, 2013, 2013, 2420-2427.	2.4	4
32	Phytotoxic Activity and Metabolism of Botrytis cinerea and Structure–Activity Relationships of Isocaryolane Derivatives. Journal of Natural Products, 2013, 76, 1016-1024.	3.0	10
33	Biotransformation of clovane derivatives. Whole cell fungi mediated domino synthesis of rumphellclovane A. Organic and Biomolecular Chemistry, 2012, 10, 3315.	2.8	10
34	Biotransformation of Bioactive Isocaryolanes by <i>Botrytis cinerea</i> . Journal of Natural Products, 2011, 74, 1707-1712.	3.0	14
35	Asymmetric preparation of antifungal 1-(4′-chlorophenyl)-1-cyclopropyl methanol and 1-(4′-chlorophenyl)-2-phenylethanol. Study of the detoxification mechanism by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 61-66.	1.8	7
36	Botrylactone: new interest in an old molecule—review of its absolute configuration and related compounds. Tetrahedron, 2011, 67, 417-420.	1.9	17

Rosario HernÃindez

#	Article	IF	CITATIONS
37	Effects of diterpenes from latex of Euphorbia lactea and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry, 2010, 71, 243-248.	2.9	44
38	Enantioselective, chemoenzymatic synthesis, and absolute configuration of the antioxidant (â^')-gloeosporiol. Tetrahedron, 2010, 66, 8068-8075.	1.9	8
39	Lipase-catalyzed resolution of 5-acetoxy-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene. Application to the synthesis of (+)-(3R,4S)-cis-4-hydroxy-6-deoxyscytalone, a metabolite isolated from Colletotrichum acutatum. Tetrahedron, 2009, 65, 3392-3396.	1.9	10
40	Global Antifungal Profile Optimization of Chlorophenyl Derivatives against <i>Botrytis cinerea</i> and <i>Colletotrichum gloeosporioides</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 4838-4843.	5.2	10
41	Synthesis and Quantitative Structureâ d'Antifungal Activity Relationships of Clovane Derivatives against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 2009, 57, 2420-2428.	5.2	22
42	Effect of Substituents on the Ring-Closing Metathesis Reaction in the Synthesis of Functionalized Nonanolactones. Synlett, 2008, 2008, 339-342.	1.8	4
43	Screening Study of Potential Lead Compounds for Natural Product Based Fungicides from Juniperus Lucayana. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	2
44	Biocatalysis Applied to the Synthesis of Pheromones. Current Organic Chemistry, 2007, 11, 693-705.	1.6	9
45	Quantitative Structureâ^ Antifungal Activity Relationships of Some Benzohydrazides against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 2007, 55, 5171-5179.	5.2	13
46	Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorganic and Medicinal Chemistry, 2007, 15, 4577-4584.	3.0	49
47	Sesquiterpenes from the wood of Juniperus lucayana. Phytochemistry, 2007, 68, 2409-2414.	2.9	29
48	Quantitative structure–activity relationship studies for the prediction of antifungal activity of N-arylbenzenesulfonamides against Botrytis cinerea. Journal of Molecular Graphics and Modelling, 2007, 25, 680-690.	2.4	21
49	Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 2007, 7, 89-123.	6.5	450
50	Metabolites from Eutypa species that are pathogens on grapes. Natural Product Reports, 2006, 23, 108-116.	10.3	18
51	The Antifungal Activity of Widdrol and Its Biotransformation byColletotrichum gloeosporioides(penz.) Penz. & Sacc. andBotrytis cinereaPers.:Â Fr Journal of Agricultural and Food Chemistry, 2006, 54, 7517-7521.	5.2	33
52	Biosynthetic Studies on the Botcinolide Skeleton:  New Hydroxylated Lactones from Botrytis cinerea. Journal of Organic Chemistry, 2006, 71, 562-565.	3.2	21
53	Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5836-5839.	2.2	31
54	The role of botrydienediol in the biodegradation of the sesquiterpenoid phytotoxin botrydial by Botrytis cinerea. Tetrahedron, 2006, 62, 8256-8261.	1.9	18

Rosario HernÃindez

#	Article	IF	CITATIONS
55	Biocatalysis Applied to the Synthesis of Agrochemicals. Current Organic Chemistry, 2006, 10, 2037-2054.	1.6	50
56	Antifungal Activity and Biotransformation of Diisophorone byBotrytis cinerea. Journal of Agricultural and Food Chemistry, 2005, 53, 6035-6039.	5.2	20
57	Screening Study of Lead Compounds for Natural Product-Based Fungicides:Â Antifungal Activity and Biotransformation of 6α,7α-Dihydroxy-β-himachalene byBotrytis cinerea. Journal of Agricultural and Food Chemistry, 2005, 53, 6673-6677.	5.2	39
58	Virulence-Toxin Production Relationship in Isolates of the Plant Pathogenic Fungus Botrytis cinerea. Journal of Phytopathology, 2004, 152, 563-566.	1.0	62
59	Screening study for potential lead compounds for natural product-based fungicides: I. Synthesis and in vitro evaluation of coumarins against Botrytis cinerea. Pest Management Science, 2004, 60, 927-932.	3.4	55
60	Two novel steroids from Euphorbia officinarum latex. Natural Product Research, 2004, 18, 177-181.	1.8	15
61	The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. Journal of Chemical Research, 2004, 2004, 441-443.	1.3	21
62	Chemical Transformations on Botryane Skeleton. Effect on the Cytotoxic Activity. Journal of Natural Products, 2003, 66, 344-349.	3.0	37
63	Biotransformation of the fungistatic compound (R)-(+)-1-(4′-chlorophenyl)propan-1-ol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 267-271.	1.8	10
64	Studies on biotransformation of (±)-1-(4′-chlorophenyl)-2-phenylethanol. Tetrahedron: Asymmetry, 2003, 14, 3755-3760.	1.8	7
65	Studies on the biosynthesis of secobotryane skeleton. Tetrahedron, 2003, 59, 6267-6271.	1.9	10
66	Biotransformations by Colletotrichum species. Tetrahedron: Asymmetry, 2003, 14, 1229-1239.	1.8	56
67	Four New Lactones from Botrytis cinerea. Journal of Natural Products, 2002, 65, 1724-1726.	3.0	32
68	Biotransformation of the fungistatic sesquiterpenoid isoprobotryan-9α-ol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2002, 16, 249-253.	1.8	10
69	Biocatalytically assisted preparation of antifungal chlorophenylpropanols. Tetrahedron: Asymmetry, 2002, 13, 1681-1686.	1.8	11
70	The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. Journal of Chemical Ecology, 2002, 28, 997-1005.	1.8	130
71	Novel Rearrangements of Sesquiterpenoid Panasinsane Derivatives under Acidic Conditions. Journal of Organic Chemistry, 2001, 66, 4327-4332.	3.2	11
72	Some key metabolic intermediates in the biosynthesis of botrydial and related compounds. Tetrahedron, 2001, 57, 1929-1933.	1.9	29

Rosario HernÃindez

#	Article	IF	CITATIONS
73	Biotransformation of the fungistatic sesquiterpenoids patchoulol, ginsenol, cedrol and globulol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 329-334.	1.8	30
74	Botrytis Species: An Intriguing Source of Metabolites with a Wide Range of Biological Activities. Structure, Chemistry and Bioactivity of Metabolites Isolated from Botrytis Species Current Organic Chemistry, 2000, 4, 1261-1286.	1.6	54
75	Secobotrytriendiol and Related Sesquiterpenoids:Â New Phytotoxic Metabolites fromBotrytiscinerea. Journal of Natural Products, 2000, 63, 182-184.	3.0	39
76	Biotransformation of (4E,8R)-Caryophyll-4(5)-en-8-ol byBotrytiscinerea. Journal of Natural Products, 2000, 63, 44-47.	3.0	25
77	Novel Rearrangement of an Isocaryolane Sesquiterpenoid under Mitsunobu Conditions. Journal of Organic Chemistry, 2000, 65, 7786-7791.	3.2	30
78	Novel methoxyl and hydroxyl directed pinacol rearrangements of an isocaryolane sesquiterpenoid under Mitsunobu conditions. Tetrahedron Letters, 1999, 40, 6497-6498.	1.4	7
79	Structure-activity relationships of new phytotoxic metabolites with the botryane skeleton from Botrytis cinerea. Tetrahedron, 1999, 55, 2389-2400.	1.9	45
80	Biotransformation of Caryophyllene Oxide by Botrytis cinerea. Journal of Natural Products, 1999, 62, 41-44.	3.0	31
81	Stereochemistry of a rearrangement of B and C rings in clovane skeleton. Tetrahedron, 1998, 54, 1615-1626.	1.9	13
82	Some metabolites of Botrytis cinerea related to botcinolide. Phytochemistry, 1996, 42, 1621-1624.	2.9	26
83	Metabolites from a shake culture of Botrytis cinerea. Phytochemistry, 1995, 38, 647-650.	2.9	42
84	Synthesis of bioactive 7-β-hydroxyeudesmanolides. Tetrahedron, 1994, 50, 10531-10538.	1.9	3
85	An improved synthesis of 3-(1,1-dimethylallyl)coumarins. Tetrahedron, 1993, 49, 1701-1710.	1.9	25
86	A new and efficient route to 3-(1,1-dimethylallyl)coumarins. Tetrahedron Letters, 1991, 32, 3209-3212.	1.4	7
87	13C NMR of coumarins. V—3-prenylated coumarins. Magnetic Resonance in Chemistry, 1990, 28, 732-735.	1.9	11