Jin-Peng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084692/publications.pdf Version: 2024-02-01

IIN-DENC YANC

#	Article	IF	CITATIONS
1	Modeling of thickness-dependent energy level alignment at organic and inorganic semiconductor interfaces. Journal of Applied Physics, 2022, 131, 245501.	2.5	1
2	Broad Palettes of Polarizing Structural Color Filter Based on Subwavelength Metallic Nanograting. Plasmonics, 2021, 16, 167-173.	3.4	5
3	Accessing the Conduction Band Dispersion in CH ₃ NH ₃ Pbl ₃ Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 3773-3778.	4.6	7
4	Density of gap states in CH ₃ NH ₃ PbI ₃ single crystals probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. Journal of Physics Condensed Matter, 2021, 33, 475001.	1.8	1
5	Valence band dispersion measured in the surface normal direction of CH ₃ NH ₃ Pbl ₃ single crystals. Applied Physics Express, 2020, 13, 011009.	2.4	5
6	Revealing mechanism of obtaining the valence band maximum via photoelectron spectroscopy in organic halide perovskite single crystals. Applied Physics Letters, 2020, 117, .	3.3	8
7	Temperature-dependent band structure evolution determined by surface geometry in organic halide perovskite single crystals. Physical Review B, 2020, 102, .	3.2	9
8	Study of energy level alignment at weakly interacting small organic molecular thin film interfaces: The validity of classical model from inorganics. Journal of Applied Physics, 2019, 125, 035301.	2.5	2
9	Improved visible-light photocurrent based on ZnO/ZnS core–shell nanorods via interfacial engineering. Journal Physics D: Applied Physics, 2019, 52, 035501.	2.8	11
10	Band Dispersion and Hole Effective Mass of Methylammonium Lead Iodide Perovskite (Solar RRL 10â^•2018). Solar Rrl, 2018, 2, 1870216.	5.8	2
11	Band Dispersion and Hole Effective Mass of Methylammonium Lead Iodide Perovskite. Solar Rrl, 2018, 2, 1800132.	5.8	38
12	Dynamic processes of charges generation in intermediate connectors for tandem organic light emitting diodes. Organic Electronics, 2017, 46, 145-149.	2.6	5
13	Fermi-level pinning appears upon weak electrode-organic contact without gap states: A universal phenomenon. Organic Electronics, 2017, 48, 172-178.	2.6	24
14	Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals. Journal Physics D: Applied Physics, 2017, 50, 423002.	2.8	97
15	Mechanism for doping induced p type C ₆₀ using thermally evaporated molybdenum trioxide (MoO ₃) as a dopant. Journal of Physics Condensed Matter, 2016, 28, 185502.	1.8	9
16	Quantitative Fermi level tuning in amorphous organic semiconductor by molecular doping: Toward full understanding of the doping mechanism. Applied Physics Letters, 2016, 109, .	3.3	12
17	The role of gap states on energy level alignment at an α-NPD/HAT(CN) 6 charge generation interface. Organic Electronics, 2015, 24, 120-124.	2.6	22
18	Origin of the energy level alignment at organic/organic interfaces: The role of structural defects. Physical Review B, 2014, 89, .	3.2	47

#	Article	IF	CITATIONS
19	Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping. Organic Electronics, 2012, 13, 2243-2249.	2.6	31
20	Electricâ€Fieldâ€Assisted Charge Generation and Separation Process in Transition Metal Oxideâ€Based Interconnectors for Tandem Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 600-608.	14.9	115
21	Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes. Organic Electronics, 2010, 11, 1578-1583.	2.6	37