
Michele W L Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084580/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Research, 2015, 75, 2139-2145.	0.9	1,167
2	Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167.	27.6	1,093
3	Translational biology of osteosarcoma. Nature Reviews Cancer, 2014, 14, 722-735.	28.4	939
4	Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158.	27.6	753
5	IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nature Medicine, 2015, 21, 719-729.	30.7	658
6	Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discovery, 2016, 6, 1382-1399.	9.4	592
7	De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncology, The, 2017, 18, e731-e741.	10.7	568
8	Targeting immunosuppressive adenosine in cancer. Nature Reviews Cancer, 2017, 17, 709-724.	28.4	526
9	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
10	Anti-TIM3 Antibody Promotes T Cell IFN-γ–Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 2011, 71, 3540-3551.	0.9	489
11	TIGIT predominantly regulates the immune response via regulatory T cells. Journal of Clinical Investigation, 2015, 125, 4053-4062.	8.2	470
12	Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 2017, 52, 71-81.	7.7	437
13	Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7142-7147.	7.1	413
14	CD4+CD25+ T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. Journal of Immunology, 2006, 176, 1582-1587.	0.8	362
15	CD73-Deficient Mice Have Increased Antitumor Immunity and Are Resistant to Experimental Metastasis. Cancer Research, 2011, 71, 2892-2900.	0.9	353
16	Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses. Cancer Cell, 2016, 30, 391-403.	16.8	300
17	Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine, 2012, 209, 1869-1882.	8.5	281
18	From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 2015, 125, 3338-3346.	8.2	271

2

#	Article	IF	CITATIONS
19	PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Seminars in Cancer Biology, 2018, 48, 91-103.	9.6	257
20	Immune-mediated dormancy: an equilibrium with cancer. Journal of Leukocyte Biology, 2008, 84, 988-993.	3.3	253
21	TIM3 ⁺ FOXP3 ⁺ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncolmmunology, 2013, 2, e23849.	4.6	251
22	Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research, 2010, 70, 7788-7799.	0.9	228
23	Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor. Cancer Research, 2014, 74, 3652-3658.	0.9	217
24	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	14.3	207
25	Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discovery, 2016, 6, 446-459.	9.4	198
26	TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132, 1689-1694.	1.4	198
27	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	9.4	173
28	Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 5183-5188.	7.0	171
29	Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood, 2002, 100, 3155-3163.	1.4	165
30	Conditional Regulatory T-Cell Depletion Releases Adaptive Immunity Preventing Carcinogenesis and Suppressing Established Tumor Growth. Cancer Research, 2010, 70, 7800-7809.	0.9	165
31	Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Research, 2015, 25, 208-224.	12.0	143
32	Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Reviews Immunology, 2005, 5, 928-940.	22.7	137
33	Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19051-19056.	7.1	136
34	The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clinical Cancer Research, 2019, 25, 5743-5751.	7.0	129
35	CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445.	0.9	118
36	IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8328-8333.	7.1	116

#	Article	IF	CITATIONS
37	Tissues in Different Anatomical Sites Can Sculpt and Vary the Tumor Microenvironment to Affect Responses to Therapy. Molecular Therapy, 2014, 22, 18-27.	8.2	112
38	Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Research, 2011, 71, 6567-6571.	0.9	111
39	Immunosurveillance and therapy of multiple myeloma are CD226 dependent. Journal of Clinical Investigation, 2015, 125, 2077-2089.	8.2	111
40	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
41	MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discovery, 2020, 10, 124-141.	9.4	101
42	Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood, 2005, 106, 2995-3003.	1.4	100
43	Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4141-4146.	7.1	98
44	A balance of interleukin-12 and -23 in cancer. Trends in Immunology, 2013, 34, 548-555.	6.8	98
45	Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood, 2015, 126, 1609-1620.	1.4	98
46	Rejection of Syngeneic Colon Carcinoma by CTLs Expressing Single-Chain Antibody Receptors Codelivering CD28 Costimulation. Journal of Immunology, 2002, 169, 5780-5786.	0.8	96
47	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	7.0	95
48	Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028530.	5.5	94
49	Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State. Cancer Research, 2012, 72, 3987-3996.	0.9	92
50	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
51	Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321.	8.5	85
52	Assessing Immune-Related Adverse Events of Efficacious Combination Immunotherapies in Preclinical Models of Cancer. Cancer Research, 2016, 76, 5288-5301.	0.9	82
53	CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunology Research, 2019, 7, 559-571.	3.4	79
54	Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150.	0.8	77

#	Article	IF	CITATIONS
55	Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nature Reviews Clinical Oncology, 2018, 15, 676-693.	27.6	77
56	Combination Therapy of Established Tumors by Antibodies Targeting Immune Activating and Suppressing Molecules. Journal of Immunology, 2010, 184, 5493-5501.	0.8	76
57	IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Science Immunology, 2019, 4, .	11.9	75
58	Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell–Rich Tumor. Cancer Research, 2016, 76, 6266-6277.	0.9	74
59	Co-administration of RANKL and CTLA4 Antibodies Enhances Lymphocyte-Mediated Antitumor Immunity in Mice. Clinical Cancer Research, 2017, 23, 5789-5801.	7.0	70
60	Timing of neoadjuvant immunotherapy in relation to surgery is crucial for outcome. Oncolmmunology, 2019, 8, e1581530.	4.6	69
61	Multiple Antitumor Mechanisms Downstream of Prophylactic Regulatory T-Cell Depletion. Cancer Research, 2010, 70, 2665-2674.	0.9	67
62	RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. OncoImmunology, 2018, 7, e1431088.	4.6	67
63	Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504.	0.9	64
64	Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clinical and Translational Immunology, 2014, 3, e22.	3.8	64
65	The role of NK cells and CD39 in the immunological control of tumor metastases. Oncolmmunology, 2019, 8, e1593809.	4.6	64
66	Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunology Research, 2020, 8, 356-367.	3.4	60
67	Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade?. Genome Medicine, 2016, 8, 111.	8.2	59
68	Gene Modification Strategies to Induce Tumor Immunity. Immunity, 2005, 22, 403-414.	14.3	56
69	A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Therapy, 2004, 11, 371-379.	4.6	55
70	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	7.0	53
71	Anti-IL-23 Monoclonal Antibody Synergizes in Combination with Targeted Therapies or IL-2 to Suppress Tumor Growth and Metastases. Cancer Research, 2011, 71, 2077-2086.	0.9	46
72	Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncolmmunology, 2018, 7, e1445949.	4.6	46

#	Article	IF	CITATIONS
73	Immunotherapy of Cancer Using Systemically Delivered Gene-Modified Human T Lymphocytes. Human Gene Therapy, 2004, 15, 699-708.	2.7	45
74	CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncolmmunology, 2018, 7, e1424677.	4.6	44
75	Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight, 2016, 1, e86850.	5.0	43
76	Batf3 ⁺ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncolmmunology, 2019, 8, e1546068.	4.6	42
77	2018 Nobel Prize in physiology or medicine. Clinical and Translational Immunology, 2018, 7, e1041.	3.8	41
78	CD1d Activation and Blockade: A New Antitumor Strategy. Journal of Immunology, 2009, 182, 3366-3371.	0.8	34
79	Biology and Clinical Observations of Regulatory T Cells in Cancer Immunology. Current Topics in Microbiology and Immunology, 2010, 344, 61-95.	1.1	32
80	Combined Anti-CD40 and Anti–IL-23 Monoclonal Antibody Therapy Effectively Suppresses Tumor Growth and Metastases. Cancer Research, 2014, 74, 2412-2421.	0.9	32
81	Stable IL-10: A New Therapeutic that Promotes Tumor Immunity. Cancer Cell, 2011, 20, 691-693.	16.8	31
82	Role of IL-17 and IL-22 in autoimmunity and cancer. Actas Dermo-sifiliográficas, 2014, 105, 41-50.	0.4	31
83	Cytotoxic lymphocytes; instigators of dramatic target cell death. Biochemical Pharmacology, 2004, 68, 1033-1040.	4.4	29
84	Does IL-17 suppress tumor growth?. Blood, 2010, 115, 2554-2555.	1.4	29
85	CD1d-Based Combination Therapy Eradicates Established Tumors in Mice. Journal of Immunology, 2009, 183, 1911-1920.	0.8	28
86	Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine after allogeneic SCT. Blood Advances, 2017, 1, 341-351.	5.2	28
87	Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discovery, 2019, 9, 1511-1519.	9.4	26
88	Selective activation of anti-CD73 mechanisms in control of primary tumors and metastases. Oncolmmunology, 2017, 6, e1312044.	4.6	25
89	Antitumor activity of dual-specific T cells and influenza virus. Cancer Gene Therapy, 2007, 14, 499-508.	4.6	24
90	Interleukin 21 Enhances Antibody-Mediated Tumor Rejection. Cancer Research, 2008, 68, 3019-3025.	0.9	24

6

#	Article	IF	CITATIONS
91	Targeting regulatory T cells in tumor immunotherapy. Immunology and Cell Biology, 2014, 92, 473-474.	2.3	24
92	Adoptive Transfer of Chimeric Fc Îμ RI Receptor Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, 17, 1134-1143.	2.7	23
93	Co-blockade of immune checkpoints and adenosine A _{2A} receptor suppresses metastasis. Oncolmmunology, 2014, 3, e958952.	4.6	22
94	ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP Reports, 2022, 4, 100386.	4.9	22
95	Both <scp>IFN</scp> â€i³ and <scp>IL</scp> â€17 are required for the development of severe autoimmune gastritis. European Journal of Immunology, 2012, 42, 2574-2583.	2.9	21
96	Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN). Trials, 2019, 20, 753.	1.6	20
97	Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight, 2019, 4, .	5.0	20
98	Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Science Translational Medicine, 2022, 14, eabj9779.	12.4	18
99	PD1 functions by inhibiting CD28â€mediated coâ€stimulation. Clinical and Translational Immunology, 2017, 6, e138.	3.8	15
100	T Cells Gene-engineered with DAP12 Mediate Effector Function in an NKG2D-dependent and Major Histocompatibility Complex-independent Manner. Journal of Biological Chemistry, 2005, 280, 38235-38241.	3.4	12
101	The interaction between murine melanoma and the immune system reveals that prolonged responses predispose for autoimmunity. Oncolmmunology, 2013, 2, e23036.	4.6	12
102	A prospective study investigating the efficacy and toxicity of definitive ChemoRadiation and ImmunOtherapy (CRIO) in locally and/or regionally advanced unresectable cutaneous squamous cell carcinoma. Radiation Oncology, 2021, 16, 69.	2.7	12
103	Can Cancer Trigger Autoimmunity?. Science, 2014, 343, 147-148.	12.6	11
104	Concomitant or delayed anti-TNF differentially impact on immune-related adverse events and antitumor efficacy after anti-CD40 therapy. , 2020, 8, e001687.		11
105	Experimental Lung Metastases in Mice Are More Effectively Inhibited by Blockade of IL23R than IL23. Cancer Immunology Research, 2018, 6, 978-987.	3.4	10
106	Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors. Oncolmmunology, 2014, 3, e963395.	4.6	8
107	Checkpoint Immunotherapy: Picking a Winner. Cancer Discovery, 2016, 6, 818-820.	9.4	8

#	Article	IF	CITATIONS
109	Systemic administration of ILâ€33 induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunology and Cell Biology, 2021, 99, 65-83.	2.3	7
110	Targeting the IL-12/IL-23 axis. Oncolmmunology, 2014, 3, e28964.	4.6	6
111	<scp>lL</scp> â€23 promotes the development of castrationâ€resistant prostate cancer. Immunology and Cell Biology, 2018, 96, 883-885.	2.3	4
112	Purinergic Receptors: Novel Targets for Cancer Immunotherapy. , 2018, , 115-141.		3
113	Rejection of Syngeneic Colon Carcinoma by CTLs Expressing Single-Chain Antibody Receptors Codelivering CD28 Costimulation. Journal of Immunology, 2003, 170, 3440-3440.	0.8	0
114	Adoptive Transfer of Chimeric Fc?RI Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, .	2.7	0
115	Abstract B122: A preclinical mouse model to assess antitumor efficacy and development of immune related adverse events (irAEs) following combination immunotherapies. , 2016, , .		0
116	Abstract SY28-01: Immunotherapy in combination with neoadjuvant therapy and immune-related adverse events. , 2016, , .		0
117	Abstract B115: Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. , 2016, , .		0
118	Abstract IA27: Novel natural killer cell targets for cancer immunotherapy. , 2016, , .		0
119	Abstract PR07: Use of a novel mouse model to investigate immune related adverse events arising from immunotherapies. , 2017, , .		0
120	Abstract PR02: Neoadjuvant immunotherapy pre-cancer surgery relieves tumor-specific CD8+ T-cell dysfunction and restores memory differentiation potential. , 2019, , .		0
121	Preoperative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC) (POPCORN) Journal of Clinical Oncology, 2019, 37, TPS129-TPS129.	1.6	0