
Tianzhen Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 2015, 107, 264-278.	3.1	611
2	Advances in research and applications of energy-related occupant behavior in buildings. Energy and Buildings, 2016, 116, 694-702.	3.1	367
3	Ten questions concerning occupant behavior in buildings: The big picture. Building and Environment, 2017, 114, 518-530.	3.0	351
4	Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 2020, 5, 150-159.	19.8	309
5	IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Buildings, 2017, 156, 258-270.	3.1	296
6	IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. Energy and Buildings, 2017, 152, 124-136.	3.1	286
7	The human dimensions of energy use in buildings: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 731-742.	8.2	259
8	Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Applied Energy, 2017, 205, 323-335.	5.1	250
9	Reinforcement learning for building controls: The opportunities and challenges. Applied Energy, 2020, 269, 115036.	5.1	240
10	Occupancy schedules learning process through a data mining framework. Energy and Buildings, 2015, 88, 395-408.	3.1	234
11	Ten questions on urban building energy modeling. Building and Environment, 2020, 168, 106508.	3.0	224
12	An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment, 2015, 92, 764-777.	3.0	219
13	Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 2020, 263, 114683.	5.1	215
14	A data-mining approach to discover patterns of window opening and closing behavior in offices. Building and Environment, 2014, 82, 726-739.	3.0	199
15	Building simulation: an overview of developments and information sources. Building and Environment, 2000, 35, 347-361.	3.0	190
16	Simulation of occupancy in buildings. Energy and Buildings, 2015, 87, 348-359.	3.1	186
17	State-of-the-art on research and applications of machine learning in the building life cycle. Energy and Buildings, 2020, 212, 109831.	3.1	182
18	Energy flexibility of residential buildings: A systematic review of characterization and quantification methods and applications. Advances in Applied Energy, 2021, 3, 100054.	6.6	147

#	Article	lF	CITATIONS
19	A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures. Energy and Buildings, 2017, 146, 383-396.	3.1	145
20	Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 2020, 62, 102408.	5.1	138
21	An occupant behavior modeling tool for co-simulation. Energy and Buildings, 2016, 117, 272-281.	3.1	134
22	Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation. Building and Environment, 2020, 178, 106738.	3.0	129
23	A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data. Applied Energy, 2013, 111, 333-350.	5.1	126
24	Commercial Building Energy Saver: An energy retrofit analysis toolkit. Applied Energy, 2015, 159, 298-309.	5.1	126
25	An ontology to represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS framework using an XML schema. Building and Environment, 2015, 94, 196-205.	3.0	126
26	Modeling of HVAC operational faults in building performance simulation. Applied Energy, 2017, 202, 178-188.	5.1	113
27	Building simulation: Ten challenges. Building Simulation, 2018, 11, 871-898.	3.0	112
28	A close look at the China Design Standard for Energy Efficiency of Public Buildings. Energy and Buildings, 2009, 41, 426-435.	3.1	111
29	Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives. Advances in Applied Energy, 2022, 5, 100084.	6.6	107
30	Occupancy data analytics and prediction: A case study. Building and Environment, 2016, 102, 179-192.	3.0	102
31	An insight into actual energy use and its drivers in high-performance buildings. Applied Energy, 2014, 131, 394-410.	5.1	101
32	Data analysis and stochastic modeling of lighting energy use in large office buildings in China. Energy and Buildings, 2015, 86, 275-287.	3.1	101
33	Synthesizing building physics with social psychology: An interdisciplinary framework for context and occupant behavior in office buildings. Energy Research and Social Science, 2017, 34, 240-251.	3.0	99
34	Occupant behavior models: A critical review of implementation and representation approaches in building performance simulation programs. Building Simulation, 2018, 11, 1-14.	3.0	99
35	Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration. Building and Environment, 2014, 79, 1-12.	3.0	98
36	Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance. Energy, 2017, 130, 286-297.	4.5	96

#	Article	IF	CITATIONS
37	Development of city buildings dataset for urban building energy modeling. Energy and Buildings, 2019, 183, 252-265.	3.1	96
38	Energy retrofit analysis toolkits for commercial buildings: A review. Energy, 2015, 89, 1087-1100.	4.5	94
39	Statistical analysis and modeling of occupancy patterns in open-plan offices using measured lighting-switch data. Building Simulation, 2013, 6, 23-32.	3.0	93
40	Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 2014, 126, 90-106.	5.1	92
41	Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology. Building and Environment, 2018, 138, 160-170.	3.0	92
42	Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings. Automation in Construction, 2018, 94, 233-243.	4.8	90
43	Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings. Applied Energy, 2016, 183, 725-736.	5.1	87
44	A simulation approach to estimate energy savings potential of occupant behavior measures. Energy and Buildings, 2017, 136, 43-62.	3.1	87
45	Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings. Energy and Buildings, 2018, 174, 214-227.	3.1	85
46	Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification. Applied Energy, 2019, 236, 55-69.	5.1	85
47	A novel stochastic modeling method to simulate cooling loads in residential districts. Applied Energy, 2017, 206, 134-149.	5.1	79
48	An agent-based stochastic Occupancy Simulator. Building Simulation, 2018, 11, 37-49.	3.0	79
49	A pattern-based automated approach to building energy model calibration. Applied Energy, 2016, 165, 214-224.	5.1	78
50	Impacts of building geometry modeling methods on the simulation results of urban building energy models. Applied Energy, 2018, 215, 717-735.	5.1	77
51	Electric load shape benchmarking for small- and medium-sized commercial buildings. Applied Energy, 2017, 204, 715-725.	5.1	75
52	Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems. Energy and Buildings, 2010, 42, 584-589.	3.1	72
53	A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E. Building Simulation, 2013, 6, 323-335.	3.0	68
54	On variations of space-heating energy use in office buildings. Applied Energy, 2013, 111, 515-528.	5.1	67

#	Article	IF	CITATIONS
55	Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China. Applied Energy, 2017, 195, 890-904.	5.1	66
56	Data mining of space heating system performance in affordable housing. Building and Environment, 2015, 89, 1-13.	3.0	65
57	Data fusion in predicting internal heat gains for office buildings through a deep learning approach. Applied Energy, 2019, 240, 386-398.	5.1	65
58	A new multizone model for the simulation of building thermal performance. Building and Environment, 1997, 32, 123-128.	3.0	64
59	Development and validation of a new variable refrigerant flow system model in EnergyPlus. Energy and Buildings, 2016, 117, 399-411.	3.1	62
60	Data analytics and optimization of an ice-based energy storage system for commercial buildings. Applied Energy, 2017, 204, 459-475.	5.1	62
61	Simulation and visualization of energy-related occupant behavior in office buildings. Building Simulation, 2017, 10, 785-798.	3.0	59
62	Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California. Applied Energy, 2018, 225, 522-534.	5.1	59
63	An international review of occupant-related aspects of building energy codes and standards. Building and Environment, 2020, 179, 106906.	3.0	59
64	Revisiting individual and group differences in thermal comfort based on ASHRAE database. Energy and Buildings, 2020, 219, 110017.	3.1	59
65	Improving the accuracy of energy baseline models for commercial buildings with occupancy data. Applied Energy, 2016, 179, 247-260.	5.1	58
66	Advanced Building Control via Deep Reinforcement Learning. Energy Procedia, 2019, 158, 6158-6163.	1.8	56
67	Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications. Energy and Buildings, 2020, 224, 110292.	3.1	56
68	Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm. Applied Energy, 2019, 248, 217-230.	5.1	54
69	Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN). Energy and Buildings, 2020, 224, 110299.	3.1	53
70	Italian prototype building models for urban scale building performance simulation. Building and Environment, 2021, 192, 107590.	3.0	53
71	A thorough assessment of China's standard for energy consumption of buildings. Energy and Buildings, 2017, 143, 114-128.	3.1	52
72	Predicting city-scale daily electricity consumption using data-driven models. Advances in Applied Energy, 2021, 2, 100025.	6.6	52

#	Article	IF	CITATIONS
73	Coupling CFD and building energy modelling to optimize the operation of a large open office space for occupant comfort. Sustainable Cities and Society, 2020, 60, 102257.	5.1	51
74	Field demonstration and implementation analysis of model predictive control in an office HVAC system. Applied Energy, 2022, 318, 119104.	5.1	51
75	Performance evaluation of an agent-based occupancy simulation model. Building and Environment, 2017, 115, 42-53.	3.0	49
76	Incorporating machine learning with building network analysis to predict multi-building energy use. Energy and Buildings, 2019, 186, 80-97.	3.1	49
77	Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres. Energy, 2021, 219, 119582.	4.5	49
78	Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance. Energy, 2015, 90, 738-747.	4.5	48
79	Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. Building and Environment, 2020, 183, 106964.	3.0	48
80	Comparison of building energy use data between the United States and China. Energy and Buildings, 2014, 78, 165-175.	3.1	46
81	Inferring occupant counts from Wi-Fi data in buildings through machine learning. Building and Environment, 2019, 158, 281-294.	3.0	46
82	The impacts of building characteristics, social psychological and cultural factors on indoor environment quality productivity belief. Building and Environment, 2020, 185, 107189.	3.0	42
83	Updates to the China Design Standard for Energy Efficiency in public buildings. Energy Policy, 2015, 87, 187-198.	4.2	41
84	Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home. Building and Environment, 2020, 177, 106842.	3.0	40
85	Modeling occupancy distribution in large spaces with multi-feature classification algorithm. Building and Environment, 2018, 137, 108-117.	3.0	39
86	Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy. Building and Environment, 2018, 132, 147-159.	3.0	39
87	Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning. Journal of Building Engineering, 2020, 29, 101120.	1.6	39
88	Analysis of heating load diversity in German residential districts and implications for the application in district heating systems. Energy and Buildings, 2017, 139, 302-313.	3.1	36
89	Predicting plug loads with occupant count data through a deep learning approach. Energy, 2019, 181, 29-42.	4.5	36
90	System-level key performance indicators for building performance evaluation. Energy and Buildings, 2020, 209, 109703.	3.1	36

#	Article	IF	CITATIONS
91	Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China. Sustainability, 2019, 11, 3683.	1.6	35
92	Integrating physics-based models with sensor data: An inverse modeling approach. Building and Environment, 2019, 154, 23-31.	3.0	35
93	Automatic and rapid calibration of urban building energy models by learning from energy performance database. Applied Energy, 2020, 277, 115584.	5.1	35
94	Urban microclimate and its impact on building performance: A case study of San Francisco. Urban Climate, 2021, 38, 100871.	2.4	35
95	A novel Variable Refrigerant Flow (VRF) heat recovery system model: Development and validation. Energy and Buildings, 2018, 168, 399-412.	3.1	34
96	Quantifying the benefits of a building retrofit using an integrated system approach: A case study. Energy and Buildings, 2018, 159, 332-345.	3.1	33
97	Evaluation of thermal imbalance of ground source heat pump systems in residential buildings in China. Building Simulation, 2020, 13, 585-598.	3.0	33
98	Learning occupants' indoor comfort temperature through a Bayesian inference approach for office buildings in United States. Renewable and Sustainable Energy Reviews, 2020, 119, 109593.	8.2	32
99	City-Scale Building Anthropogenic Heating during Heat Waves. Atmosphere, 2020, 11, 1206.	1.0	32
100	Comparison of HVAC system modeling in EnergyPlus, DeST and DOE-2.1E. Building Simulation, 2014, 7, 21-33.	3.0	31
101	A critical review on questionnaire surveys in the field of energy-related occupant behaviour. Energy Efficiency, 2018, 11, 2157-2177.	1.3	31
102	A Global Building Occupant Behavior Database. Scientific Data, 2022, 9, .	2.4	31
103	Performance-Based Evaluation of Courtyard Design in China's Cold-Winter Hot-Summer Climate Regions. Sustainability, 2018, 10, 3950.	1.6	30
104	Optimize heat prosumers' economic performance under current heating price models by using water tank thermal energy storage. Energy, 2022, 239, 122103.	4.5	30
105	IISABRE: An integrated building simulation environment. Building and Environment, 1997, 32, 219-224.	3.0	29
106	Comparative study of air-conditioning energy use of four office buildings in China and USA. Energy and Buildings, 2018, 169, 344-352.	3.1	29
107	The Squeaky wheel: Machine learning for anomaly detection in subjective thermal comfort votes. Building and Environment, 2019, 151, 219-227.	3.0	29
108	Performance-driven optimization of urban open space configuration in the cold-winter and hot-summer region of China. Building Simulation, 2019, 12, 411-424.	3.0	29

#	Article	IF	CITATIONS
109	Assessment of occupant-behavior-based indoor air quality and its impacts on human exposure risk: A case study based on the wildfires in Northern California. Science of the Total Environment, 2019, 686, 1251-1261.	3.9	28
110	Stochastic weather model for building HVAC systems. Building and Environment, 1995, 30, 521-532.	3.0	27
111	Modeling and analysis of heat emissions from buildings to ambient air. Applied Energy, 2020, 277, 115566.	5.1	27
112	<i>Buildings.Occupants</i> : a Modelica package for modelling occupant behaviour in buildings. Journal of Building Performance Simulation, 2019, 12, 433-444.	1.0	26
113	Culture, conformity, and carbon? A multi-country analysis of heating and cooling practices in office buildings. Energy Research and Social Science, 2020, 61, 101344.	3.0	26
114	Contextualising adaptive comfort behaviour within low-income housing of Mumbai, India. Building and Environment, 2020, 177, 106877.	3.0	26
115	Passive cooling designs to improve heat resilience of homes in underserved and vulnerable communities. Energy and Buildings, 2021, 252, 111383.	3.1	26
116	An inverse approach to solving zone air infiltration rate and people count using indoor environmental sensor data. Energy and Buildings, 2019, 198, 228-242.	3.1	25
117	Simulation-based assessment of the energy savings benefits of integrated control in office buildings. Building Simulation, 2009, 2, 239.	3.0	24
118	A framework for estimating the energy-saving potential of occupant behaviour improvement. Applied Energy, 2021, 287, 116591.	5.1	24
119	Linking human-building interactions in shared offices with personality traits. Building and Environment, 2020, 170, 106602.	3.0	23
120	Identifying key determinants for building energy analysis from urban building datasets. Building and Environment, 2020, 181, 107114.	3.0	23
121	A synthetic building operation dataset. Scientific Data, 2021, 8, 213.	2.4	23
122	Modeling Thermal Interactions between Buildings in an Urban Context. Energies, 2020, 13, 2382.	1.6	23
123	A three-year dataset supporting research on building energy management and occupancy analytics. Scientific Data, 2022, 9, 156.	2.4	23
124	Cross-source sensing data fusion for building occupancy prediction with adaptive lasso feature filtering. Building and Environment, 2019, 162, 106280.	3.0	22
125	A novel approach for selecting typical hot-year (THY) weather data. Applied Energy, 2019, 242, 1634-1648.	5.1	22
126	Data Mining of Occupant Behavior in Office Buildings. Energy Procedia, 2015, 78, 585-590.	1.8	21

#	Article	IF	CITATIONS
127	Characterizing patterns and variability of building electric load profiles in time and frequency domains. Applied Energy, 2021, 291, 116721.	5.1	21
128	A design day for building load and energy estimation. Building and Environment, 1999, 34, 469-477.	3.0	20
129	Smart building management vs. intuitive human control—Lessons learnt from an office building in Hungary. Building Simulation, 2017, 10, 811-828.	3.0	20
130	The impact of evaporation from porous tile on roof thermal performance: A case study of Guangzhou's climatic conditions. Energy and Buildings, 2017, 136, 161-172.	3.1	20
131	An overview of data tools for representing and managing building information and performance data. Renewable and Sustainable Energy Reviews, 2021, 147, 111224.	8.2	20
132	AlphaBuilding ResCommunity: A multi-agent virtual testbed for community-level load coordination. Advances in Applied Energy, 2021, 4, 100061.	6.6	20
133	Investigation of pre-cooling as a recommended measure to improve residential buildings' thermal resilience during heat waves. Building and Environment, 2022, 210, 108694.	3.0	20
134	Ten questions concerning agent-based modeling of occupant behavior for energy and environmental performance of buildings. Building and Environment, 2022, 217, 109016.	3.0	20
135	Spatial distribution of internal heat gains: A probabilistic representation and evaluation of its influence on cooling equipment sizing in large office buildings. Energy and Buildings, 2017, 139, 407-416.	3.1	19
136	Anthropogenic heating of the urban environment: An investigation of feedback dynamics between urban micro-climate and decomposed anthropogenic heating from buildings. Building and Environment, 2022, 213, 108841.	3.0	19
137	Stochastic analysis of building thermal processes. Building and Environment, 1993, 28, 509-518.	3.0	17
138	Impact of post-rainfall evaporation from porous roof tiles on building cooling load in subtropical China. Applied Thermal Engineering, 2018, 142, 391-400.	3.0	17
139	An improved method for direct incident solar radiation calculation from hourly solar insolation data in building energy simulation. Energy and Buildings, 2020, 227, 110425.	3.1	17
140	Prototype energy models for data centers. Energy and Buildings, 2021, 231, 110603.	3.1	17
141	Robustness of energy performance of Zero-Net-Energy (ZNE) homes. Energy and Buildings, 2020, 224, 110251.	3.1	17
142	A preliminary investigation of water usage behavior in single-family homes. Building Simulation, 2017, 10, 949-962.	3.0	16
143	PAD., 2017,,.		15
144	Occupant-Centric key performance indicators to inform building design and operations. Journal of Building Performance Simulation, 2021, 14, 814-842.	1.0	15

#	Article	IF	CITATIONS
145	A simulation-based assessment of technologies to reduce heat emissions from buildings. Building and Environment, 2021, 195, 107772.	3.0	15
146	Assessment of energy savings potential from the use of demand controlled ventilation in general office spaces in California. Building Simulation, 2010, 3, 117-124.	3.0	13
147	A Framework for Privacy-Preserving Data Publishing with Enhanced Utility for Cyber-Physical Systems. ACM Transactions on Sensor Networks, 2018, 14, 1-22.	2.3	13
148	A library of building occupant behaviour models represented in a standardised schema. Energy Efficiency, 2019, 12, 637-651.	1.3	13
149	Comparing computer run time of building simulation programs. Building Simulation, 2008, 1, 210-213.	3.0	12
150	Operation and performance of VRF systems: Mining a large-scale dataset. Energy and Buildings, 2021, 230, 110519.	3.1	12
151	Vertical meteorological patterns and their impact on the energy demand of tall buildings. Energy and Buildings, 2021, 232, 110624.	3.1	12
152	Informing the planning of rotating power outages in heat waves through data analytics of connected smart thermostats for residential buildings. Environmental Research Letters, 2021, 16, 074003.	2.2	12
153	An ontology to represent synthetic building occupant characteristics and behavior. Automation in Construction, 2021, 125, 103621.	4.8	11
154	A level-of-details framework for representing occupant behavior in agent-based models. Automation in Construction, 2022, 139, 104290.	4.8	11
155	Extending the Brick schema to represent metadata of occupants. Automation in Construction, 2022, 139, 104307.	4.8	11
156	Validation of an inverse model of zone air heat balance. Building and Environment, 2019, 161, 106232.	3.0	10
157	Generation and representation of synthetic smart meter data. Building Simulation, 2020, 13, 1205-1220.	3.0	10
158	Extreme events, energy security and equality through micro- and macro-levels: Concepts, challenges and methods. Energy Research and Social Science, 2022, 85, 102401.	3.0	10
159	Application and evaluation of a pattern-based building energy model calibration method using public building datasets. Building Simulation, 2022, 15, 1385-1400.	3.0	10
160	Representation and evolution of urban weather boundary conditions in downtown Chicago. Journal of Building Performance Simulation, 2020, 13, 182-194.	1.0	9
161	Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations. Journal of Computing in Civil Engineering, 2019, 33, 04019037.	2.5	8
162	Exploring thermal state in mixed immersive virtual environments. Journal of Building Engineering, 2021, 44, 102918.	1.6	8

#	Article	IF	CITATIONS
163	Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage. Energy, 2022, 248, 123601.	4.5	8
164	Effective Missing Value Imputation Methods for Building Monitoring Data. , 2020, , .		7
165	Large scale energy analysis and renovation strategies for social housing in the historic city of Venice. Sustainable Energy Technologies and Assessments, 2022, 52, 102041.	1.7	7
166	Developing occupant archetypes within urban low-income housing: A case study in Mumbai, India. Building Simulation, 2022, 15, 1661-1683.	3.0	7
167	Intersecting heuristic adaptive strategies, building design and energy saving intentions when facing discomfort environment: A cross-country analysis. Building and Environment, 2021, 204, 108129.	3.0	6
168	Outdoor synthetic temperature for the calculation of space heating load. Energy and Buildings, 1998, 28, 269-277.	3.1	3
169	Towards Off-policy Evaluation as a Prerequisite for Real-world Reinforcement Learning in Building Control. , 2020, , .		3
170	Generating synthetic occupants for use in building performance simulation. Journal of Building Performance Simulation, 2021, 14, 712-729.	1.0	3
171	A review of preserving privacy in data collected from buildings with differential privacy. Journal of Building Engineering, 2022, 56, 104724.	1.6	3
172	Privacy-preserving building-related data publication using PAD. , 2017, , .		2
173	Developing quantitative insights on building occupant behaviour: Supporting modelling tools and datasets. , 2020, , 283-319.		2
174	How Can Floor Covering Influence Buildings' Demand Flexibility?. Energies, 2021, 14, 3658.	1.6	2
175	The Application of Urban Building Energy Modeling in Urban Planning. Future City, 2021, , 45-63.	0.2	1
176	Visualizing Urban Microclimate and Quantifying its Impact on Building Energy Use in San Francisco. , 2019, , .		1