Elisabetta Vergani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808434/publications.pdf

Version: 2024-02-01

24 papers

858 citations

840776 11 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

1864 citing authors

#	Article	IF	CITATIONS
1	Extracellular vesicles in anti-tumor immunity. Seminars in Cancer Biology, 2022, 86, 64-79.	9.6	21
2	Genetic Layout of Melanoma Lesions Is Associated with BRAF/MEK-Targeted Therapy Resistance and Transcriptional Profiles. Journal of Investigative Dermatology, 2022, 142, 3030-3040.e5.	0.7	6
3	3D models for melanoma γδT cellâ€based immunotherapy. Clinical and Translational Medicine, 2022, 12, .	4.0	1
4	Identification of suitable mRNAs and microRNAs as reference genes for expression analyses in skin cells under sex hormone exposure. Gene, 2021, 769, 145336.	2.2	7
5	Deregulated FASN Expression in BRAF Inhibitor-Resistant Melanoma Cells Unveils New Targets for Drug Combinations. Cancers, 2021, 13, 2284.	3.7	13
6	The Fatty Acid and Protein Profiles of Circulating CD81-Positive Small Extracellular Vesicles Are Associated with Disease Stage in Melanoma Patients. Cancers, 2021, 13, 4157.	3.7	17
7	Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes, 2021, 12, 1440.	2.4	2
8	miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Communication and Signaling, 2020, 18, 156.	6.5	18
9	microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1214.	4.8	12
10	Enhancer of zeste 2 polycomb repressive complex 2 subunit polymorphisms in melanoma skin cancer risk. Experimental Dermatology, 2020, 29, 980-986.	2.9	1
11	Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction. Scientific Reports, 2020, 10, 3612.	3.3	11
12	Targeting p63 Upregulation Abrogates Resistance to MAPK Inhibitors in Melanoma. Cancer Research, 2020, 80, 2676-2688.	0.9	14
13	Selective modulation of immune transcripts in extracellular vesicles from plasma of renal cell carcinoma patients receiving nivolumab Journal of Clinical Oncology, 2020, 38, 719-719.	1.6	1
14	Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 407-420.	2.8	39
15	Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. Journal of Clinical Investigation, 2018, 128, 5505-5516.	8.2	193
16	Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer. Vaccines, 2016, 4, 38.	4.4	20
17	microRNA Expression in Sentinel Nodes from Progressing Melanoma Patients Identifies Networks Associated with Dysfunctional Immune Response. Genes, 2016, 7, 124.	2.4	8
18	TNF-Related Apoptosis-Inducing Ligand (TRAIL)–Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clinical Cancer Research, 2016, 22, 3499-3512.	7.0	158

#	Article	IF	CITATION
19	Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget, 2016, 7, 4428-4441.	1.8	84
20	Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma <i>in vivo</i> . Oncotarget, 2016, 7, 12857-12868.	1.8	32
21	Transcriptional Profiling of Melanoma Sentinel Nodes Identify Patients with Poor Outcome and Reveal an Association of CD30+ T Lymphocytes with Progression. Cancer Research, 2014, 74, 130-140.	0.9	27
22	Alternative Activation of Human Plasmacytoid DCs In Vitro and in Melanoma Lesions: Involvement of LAG-3. Journal of Investigative Dermatology, 2014, 134, 1893-1902.	0.7	74
23	Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 2011, 13, 1132-IN17.	5.3	89
24	Targeting of the Lipid Metabolism Impairs Resistance to BRAF Kinase Inhibitor in Melanoma. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	10