
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10458-10463.	7.1	433
2	Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 2007, 8, 544-554.	16.3	359
3	Transcriptional Repression by Neuron-Restrictive Silencer Factor Is Mediated via the Sin3-Histone Deacetylase Complex. Molecular and Cellular Biology, 2000, 20, 2147-2157.	2.3	195
4	Current level of glycaemic control and its associated factors in patients with type 2 diabetes across Europe: data from the PANORAMA study. Clinical Endocrinology, 2014, 80, 47-56.	2.4	168
5	Inhibition of KCNQ1â€4 potassium channels expressed in mammalian cells via M 1 muscarinic acetylcholine receptors. Journal of Physiology, 2000, 522, 349-355.	2.9	154
6	Downregulated REST Transcription Factor Is a Switch Enabling Critical Potassium Channel Expression and Cell Proliferation. Molecular Cell, 2005, 20, 45-52.	9.7	133
7	Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain, 2011, 152, 742-754.	4.2	130
8	Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 2006, 34, 3862-3877.	14.5	121
9	Two Types of K+Channel Subunit, Erg1 and KCNQ2/3, Contribute to the M-Like Current in a Mammalian Neuronal Cell. Journal of Neuroscience, 1999, 19, 7742-7756.	3.6	120
10	Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels. British Journal of Pharmacology, 2000, 129, 413-415.	5.4	112
11	Sharp Wave-Like Activity in the Hippocampus In Vitro in Mice Lacking the Gap Junction Protein Connexin 36. Journal of Neurophysiology, 2003, 89, 2046-2054.	1.8	110
12	BRG1 Chromatin Remodeling Activity Is Required for Efficient Chromatin Binding by Repressor Element 1-silencing Transcription Factor (REST) and Facilitates REST-mediated Repression. Journal of Biological Chemistry, 2006, 281, 38974-38980.	3.4	93
13	Transcriptional Control of <i>KCNQ</i> Channel Genes and the Regulation of Neuronal Excitability. Journal of Neuroscience, 2010, 30, 13235-13245.	3.6	93
14	Hypoxia-inducible Factor-1α (HIF1α) Switches on Transient Receptor Potential Ankyrin Repeat 1 (TRPA1) Gene Expression via a Hypoxia Response Element-like Motif to Modulate Cytokine Release. Journal of Biological Chemistry, 2012, 287, 31962-31972.	3.4	93
15	Neural Specific Expression of the m4 Muscarinic Acetylcholine Receptor Gene Is Mediated by a RE1/NRSE-type Silencing Element. Journal of Biological Chemistry, 1996, 271, 14221-14225.	3.4	80
16	Simvastatin inhibits TNFα-induced invasion of human cardiac myofibroblasts via both MMP-9-dependent and -independent mechanisms. Journal of Molecular and Cellular Cardiology, 2007, 43, 168-176.	1.9	70
17	Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7985-7989.	7.1	65
18	Distinct RE-1 Silencing Transcription Factor-containing Complexes Interact with Different Target Genes. Journal of Biological Chemistry, 2004, 279, 556-561.	3.4	62

#	Article	IF	CITATIONS
19	Regulation of gene expression in the nervous system. Biochemical Journal, 2008, 414, 327-341.	3.7	60
20	Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with Type 2 diabetes drive persistent changes in phenotype and function. Journal of Molecular and Cellular Cardiology, 2014, 74, 240-250.	1.9	58
21	Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers. Cardiovascular Research, 2011, 89, 282-289.	3.8	55
22	Interaction of the Repressor Element 1-silencing Transcription Factor (REST) with Target Genes. Journal of Molecular Biology, 2003, 334, 863-874.	4.2	51
23	The Repressor Element 1-Silencing Transcription Factor Regulates Heart-Specific Gene Expression Using Multiple Chromatin-Modifying Complexes. Molecular and Cellular Biology, 2007, 27, 4082-4092.	2.3	50
24	Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism. Journal of Neurochemistry, 2017, 143, 214-224.	3.9	49
25	The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. Journal of Neurochemistry, 2006, 98, 1828-1840.	3.9	42
26	Cell adhesion alters gene transcription in chicken embryo brain cells and mouse embryonal carcinoma cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2868-2872.	7.1	39
27	Structure of the m4 Cholinergic Muscarinic Receptor Gene and Its Promoter. Journal of Biological Chemistry, 1995, 270, 30933-30940.	3.4	36
28	Evolution of the Vertebrate Gene Regulatory Network Controlled by the Transcriptional Repressor REST. Molecular Biology and Evolution, 2009, 26, 1491-1507.	8.9	36
29	Structure of the m1 Muscarinic Acetylcholine Receptor Gene and Its Promoter. Journal of Biological Chemistry, 1997, 272, 17112-17117.	3.4	35
30	Dominant-Negative Subunits Reveal Potassium Channel Families That Contribute to M-Like Potassium Currents. Journal of Neuroscience, 2002, 22, RC212-RC212.	3.6	29
31	The Contribution and Therapeutic Potential of Epigenetic Modifications in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 649.	2.8	29
32	KvSNP: accurately predicting the effect of genetic variants in voltage-gated potassium channels. Bioinformatics, 2011, 27, 2181-2186.	4.1	27
33	Repressor element 1–silencing transcription factor drives the development of chronic pain states. Pain, 2019, 160, 2398-2408.	4.2	26
34	Kv1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2719-H2725.	3.2	24
35	MicroRNAâ€⊉1 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells. IUBMB Life, 2018, 70, 649-657.	3.4	20
36	Epigenetic Mechanisms in Development and Disease. Biochemical Society Transactions, 2013, 41, 697-699.	3.4	18

#	Article	IF	CITATIONS
37	Maternal Rest/Nrsf Regulates Zebrafish Behavior through <i>snap25a/b</i> . Journal of Neuroscience, 2016, 36, 9407-9419.	3.6	15
38	Neuronal expression of the rat M1 muscarinic acetylcholine receptor gene is regulated by elements in the first exon. Biochemical Journal, 1999, 340, 475-483.	3.7	12
39	Alzheimer's disease: the potential of epigenetic treatments and current clinical candidates. Neurodegenerative Disease Management, 2020, 10, 543-558.	2.2	9
40	Less REST, More Vascular Disease? Regulation of Cell Cycle and Migration of Vascular Smooth Muscle Cells. Cell Cycle, 2006, 5, 129-131.	2.6	8
41	Multiple chromatin modifications important for gene expression changes in cardiac hypertrophy. Biochemical Society Transactions, 2006, 34, 1138-1140.	3.4	6
42	Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes. Diabetes and Vascular Disease Research, 2017, 14, 122-129.	2.0	5
43	Repression and activation of muscarinic receptor genes. Life Sciences, 1999, 64, 495-499.	4.3	4
44	Neuronal expression of the rat M1 muscarinic acetylcholine receptor gene is regulated by elements in the first exon. Biochemical Journal, 1999, 340, 475.	3.7	4
45	Pro-inflammatory mechanisms of a non-steroidal anti-inflammatory drug. Trends in Pharmacological Sciences, 2002, 23, 109.	8.7	3
46	KvDB; mining and mapping sequence variants in voltage-gated potassium channels. Human Mutation, 2010, 31, 908-917.	2.5	3
47	Uncovering combinatorial interactions in chromatin. Epigenomics, 2011, 3, 371-379.	2.1	3
48	Histone deacetylase inhibitors induce medulloblastoma cell death independent of HDACs recruited in REST repression complexes. Molecular Genetics & Genomic Medicine, 2020, 8, e1429.	1.2	3
49	Pro-inflammatory mechanisms of a nonsteroidal anti-inflammatory drug. Trends in Endocrinology and Metabolism, 2002, 13, 53.	7.1	2
50	Chromatin switching and transcriptional regulation in disease. Biochemical Society Transactions, 2008, 36, 599-602.	3.4	2
51	Gene Expression in Neuronal Disease. Biochemical Society Transactions, 2009, 37, 1261-1262.	3.4	2
52	The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metabolic Brain Disease, 2021, 36, 1135-1150.	2.9	2
53	Transcriptional Repression by the Neuron-Restrictive Silencer Factor (REST/NRSF) is Mediated via the Sin3/Histone Deacetylase complex. Biochemical Society Transactions, 2000, 28, A88-A88.	3.4	1
54	How can anti-diabetics suppress tumours?. Trends in Pharmacological Sciences, 2001, 22, 399.	8.7	1

#	Article	IF	CITATIONS
55	168â€Exploring the Role of Microrna-21 On Human Saphenous Vein Smooth Muscle Cell Function. Heart, 2014, 100, A96.1-A96.	2.9	1
56	Efficient infection of organotypic hippocampal slice cultures with adenovirus carrying the transgene REST/NRSF. Journal of Neuroscience Methods, 2021, 356, 109147.	2.5	1
57	Identifying Transcriptional Regulatory Regions Using Reporter Genes and DNA—Protein Interactions by Chromatin Immunoprecipitation. Methods in Molecular Biology, 2008, 491, 3-17.	0.9	1
58	Signalling without the receptor. Trends in Pharmacological Sciences, 2000, 21, 371.	8.7	0
59	Transcription factors move with the glow. Trends in Pharmacological Sciences, 2001, 22, 166.	8.7	0
60	The real fat controller? A glucose-responsive transcription factor. Trends in Pharmacological Sciences, 2001, 22, 499.	8.7	0
61	Regulation of gene expression by the anticonvulsant VPA suggests potential new uses. Trends in Pharmacological Sciences, 2002, 23, 10.	8.7	0
62	One in the eye for herpes simplex virus. Trends in Pharmacological Sciences, 2002, 23, 355-356.	8.7	0
63	Regulation Of Kcnq2/3 Channels By The Transcriptional Repressor REST In Nociception. Biophysical Journal, 2009, 96, 175a-176a.	0.5	0
64	Investigating chromatin regulation by the repressor element 1â€silencing transcription factor (REST) and its effect in cardiac hypertrophy. FASEB Journal, 2007, 21, A654.	0.5	0
65	Blockers of K _V 1.3 channel suppress smooth muscle response to injury and neointimal hyperplasia. FASEB Journal, 2007, 21, A69.	0.5	0
66	Chromatin Switching and Gene Dynamics Associated with Type 2 Diabetes. Epigenetics and Human Health, 2013, , 219-233.	0.2	0