Ignacio Ezquer Ph D

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8084141/publications.pdf Version: 2024-02-01

ICNACIO EZOLIER PH D

#	Article	IF	CITATIONS
1	Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. Journal of Experimental Botany, 2022, 73, 1499-1515.	4.8	13
2	The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops. Environmental and Experimental Botany, 2022, 196, 104795.	4.2	6
3	cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes, 2021, 12, 525.	2.4	10
4	Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes, 2021, 12, 1189.	2.4	8
5	Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies. Frontiers in Plant Science, 2021, 12, 730270.	3.6	5
6	Developmental Signals in the 21st Century; New Tools and Advances in Plant Signaling. Genes, 2021, 12, 1708.	2.4	0
7	BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene <i>SEEDSTICK</i> in Arabidopsis. Plant Journal, 2020, 102, 582-599.	5.7	34
8	SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Reports, 2020, 30, 2846-2857.e3.	6.4	42
9	Plant Cell Walls Tackling Climate Change: Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. Plants, 2020, 9, 212.	3.5	41
10	New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development (Cambridge), 2019, 146, .	2.5	22
11	Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. Journal of Experimental Botany, 2019, 70, 3007-3019.	4.8	9
12	Carbohydrate reserves and seed development: an overview. Plant Reproduction, 2018, 31, 263-290.	2.2	54
13	Plastidial Phosphoglucose Isomerase Is an Important Determinant of Seed Yield through Its Involvement in Gibberellin-Mediated Reproductive Development and Storage Reserve Biosynthesis in Arabidopsis. Plant Cell, 2018, 30, 2082-2098.	6.6	15
14	Research Article Iron excess in rice: from phenotypic changes to functional genomics of WRKY transcription factors Genetics and Molecular Research, 2017, 16, .	0.2	18
15	The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics, 2017, 13, e1006726.	3.5	98
16	The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat. Plant Cell, 2016, 28, 2478-2492.	6.6	70
17	Networks controlling seed size in Arabidopsis. Plant Reproduction, 2015, 28, 17-32.	2.2	87
18	SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat. PLoS Genetics, 2014, 10, e1004856.	3.5	86

Ignacio Ezquer Ph D

#	Article	IF	CITATIONS
19	Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 2014, 32, 87-106.	11.7	211
20	A sensitive method for confocal fluorescence microscopic visualization of starch granules in iodine stained samples. Plant Signaling and Behavior, 2012, 7, 1146-1150.	2.4	22
21	Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase in Response to Light is Not a Major Determinant of Fine Regulation of Transitory Starch Accumulation in Arabidopsis Leaves. Plant and Cell Physiology, 2012, 53, 433-444.	3.1	38
22	Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous <i>Atbt1</i> Arabidopsis mutants. Plant Journal, 2011, 68, 1115-1121.	5.7	29
23	Microbial Volatile-Induced Accumulation of Exceptionally High Levels of Starch in Arabidopsis Leaves Is a Process Involving NTRC and Starch Synthase Classes III and IV. Molecular Plant-Microbe Interactions, 2011, 24, 1165-1178.	2.6	40
24	Dual Targeting to Mitochondria and Plastids of AtBT1 and ZmBT1, Two Members of the Mitochondrial Carrier Family. Plant and Cell Physiology, 2011, 52, 597-609.	3.1	46
25	Arabidopsis thaliana Mutants Lacking ADP-Glucose Pyrophosphorylase Accumulate Starch and Wild-type ADP-Glucose Content: Further Evidence for the Occurrence of Important Sources, other than ADP-Glucose Pyrophosphorylase, of ADP-Glucose Linked to Leaf Starch Biosynthesis. Plant and Cell Physiology. 2011. 52. 1162-1176.	3.1	54
26	Microbial Volatile Emissions Promote Accumulation of Exceptionally High Levels of Starch in Leaves in Mono- and Dicotyledonous Plants. Plant and Cell Physiology, 2010, 51, 1674-1693.	3.1	83
27	A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. Plant Signaling and Behavior, 2010, 5, 1638-1641.	2.4	6
28	Enhancing Sucrose Synthase Activity in Transgenic Potato (Solanum tuberosum L.) Tubers Results in Increased Levels of Starch, ADPglucose and UDPglucose and Total Yield. Plant and Cell Physiology, 2009, 50, 1651-1662.	3.1	186
29	Plastidial Localization of a Potato â€~Nudix' Hydrolase of ADP-glucose Linked to Starch Biosynthesis. Plant and Cell Physiology, 2008, 49, 1734-1746.	3.1	13