Benoit Simard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Composites Science and Technology, 2011, 71, 1569-1578.	3.8	207
2	Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies. ACS Nano, 2014, 8, 6211-6220.	7.3	199
3	Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Composites Part B: Engineering, 2015, 69, 87-93.	5.9	132

Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether) Tj ETQq0 0 0 rgBT $\frac{10}{130}$ Overlock 10 Tf 50

5	Covalent Functionalization of Boron Nitride Nanotubes <i>via</i> Reduction Chemistry. ACS Nano, 2015, 9, 12573-12582.	7.3	105
6	Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 2004, 42, 1657-1664.	5.4	97
7	The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials, 2011, 32, 1167-1176.	5.7	86
8	Correlation between Young's modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1184-1191.	3.8	85
9	Role of Hydrogen in High-Yield Growth of Boron Nitride Nanotubes at Atmospheric Pressure by Induction Thermal Plasma. ACS Nano, 2018, 12, 884-893.	7.3	66
10	Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials, 2010, 31, 2866-2873.	5.7	59
11	Scalable manufacturing of boron nitride nanotubes and their assemblies: a review. Semiconductor Science and Technology, 2017, 32, 013003.	1.0	59
12	Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1267-1279.	3.8	50
13	3D chemically cross-linked single-walled carbon nanotube buckypapers. RSC Advances, 2014, 4, 57564-57573.	1.7	43
14	Scalable Gas-Phase Purification of Boron Nitride Nanotubes by Selective Chlorine Etching. Chemistry of Materials, 2020, 32, 3911-3921.	3.2	38
15	Polymer nanocomposites from free-standing, macroscopic boron nitride nanotube assemblies. RSC Advances, 2015, 5, 41186-41192.	1.7	37
16	Thermal conductivity of bulk boron nitride nanotube sheets and their epoxyâ€impregnated composites. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2237-2242.	0.8	35
17	Enhanced Thermal Conductivity in Polymer Nanocomposites via Covalent Functionalization of Boron Nitride Nanotubes with Short Polyethylene Chains for Heat-Transfer Applications. ACS Applied Nano Materials, 2019, 2, 440-451.	2.4	35
18	Self-Assembly and Visualization of Poly(3-hexyl-thiophene) Chain Alignment along Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2015, 119, 26605-26610.	1.5	31

BENOIT SIMARD

#	Article	IF	CITATIONS
19	Boron Nitride Nanotube Composites and Applications. , 2019, , 91-111.		29
20	Nanoreinforced epoxy and adhesive joints incorporating boron nitride nanotubes. International Journal of Adhesion and Adhesives, 2018, 84, 194-201.	1.4	27
21	Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes. Acta Astronautica, 2017, 141, 57-63.	1.7	25
22	pHâ€Switchable Waterâ€Soluble Boron Nitride Nanotubes. ChemistrySelect, 2018, 3, 9308-9312.	0.7	25
23	Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Advances, 2019, 1, 1914-1923.	2.2	24
24	Enhanced Shear Performance of Hybrid Glass Fiber–Epoxy Laminates Modified with Boron Nitride Nanotubes. ACS Applied Nano Materials, 2018, 1, 2709-2717.	2.4	20
25	Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride nanotubes. Nanocomposites, 2018, 4, 10-17.	2.2	20
26	Quality Assessment of Bulk Boron Nitride Nanotubes for Advancing Research, Commercial, and Industrial Applications. ACS Applied Nano Materials, 2019, 2, 2054-2063.	2.4	19
27	Reinforcement of Polymer-Based Nanocomposites by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes. ACS Applied Nano Materials, 2020, 3, 364-374.	2.4	18
28	About the solubility of reduced SWCNT in DMSO. Nanotechnology, 2009, 20, 245701.	1.3	16
29	Coupled thermogravimetry, mass spectrometry, and infrared spectroscopy for quantification of surface functionality on single-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 2010, 396, 1037-1044.	1.9	16
30	Covalent derivatization of boron nitride nanotubes with peroxides and their application in polycarbonate composites. New Journal of Chemistry, 2017, 41, 7571-7577.	1.4	16
31	Dynamic mechanical characterization of boron nitride nanotube—epoxy nanocomposites. Polymer Composites, 2019, 40, 2119-2131.	2.3	13
32	In-Flight Plasma Functionalization of Boron Nitride Nanotubes with Ammonia for Composite Applications. ACS Applied Nano Materials, 2020, 3, 294-302.	2.4	12
33	Assessment of boron nitride nanotube materials using X-ray photoelectron spectroscopy. Canadian Journal of Chemistry, 2019, 97, 457-464.	0.6	11
34	Boron nitride nanotubes reinforced polycarbonate nanocomposites. Materials Today Communications, 2019, 20, 100586.	0.9	10
35	Conformational Order in Aggregated rra-P3HT as an Indicator of Quality of Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2020, 11, 4179-4185.	2.1	6
36	Glass Fiber–Epoxy Composites with Boron Nitride Nanotubes for Enhancing Interlaminar Properties in Structures. ACS Omega, 2022, 7, 10674-10686.	1.6	6

#	Article	IF	CITATIONS
37	Stretchable Structure for a Benchtop-Scale Morphed Leading Edge Demonstration. , 2019, , .		5
38	Carbon Nanotube Fabric-Based Composites for Development of Multifunctional Structures. MRS Advances, 2019, 4, 3123-3132.	0.5	3
39	Boron Nitride Nanotubes for Optical Fiber Chemical Sensing Applications. , 2020, 4, 1-4.		3