
David O Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8083936/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postmortem Skeletal Microbial Community Composition and Function in Buried Human Remains. MSystems, 2022, 7, e0004122.	3.8	9
2	Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. Journal of Proteome Research, 2021, 20, 2533-2546.	3.7	26
3	A Pilot Study of Microbial Succession in Human Rib Skeletal Remains during Terrestrial Decomposition. MSphere, 2021, 6, e0045521.	2.9	12
4	Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography–Mass Spectrometry. Journal of Forensic Sciences, 2020, 65, 134-143.	1.6	25
5	Using microbiome tools for estimating the postmortem interval. , 2020, , 171-191.		7
6	Characterizing the postmortem human bone microbiome from surface-decomposed remains. PLoS ONE, 2020, 15, e0218636.	2.5	24
7	The importance of microbial communities in the estimation of the time since death. , 2020, , 109-139.		6
8	The microbiology, pH, and oxidation reduction potential of larval masses in decomposing carcasses on Oahu, Hawaii. Journal of Clinical Forensic and Legal Medicine, 2019, 67, 37-48.	1.0	19
9	An Experiment to Characterize the Decomposer Community Associated with Carcasses (<i>Sus scrofa) Tj ETQq1</i>	1 0.78431 1.8	4 ₁ gBT /Ove
10	Trace Evidence Potential in Postmortem Skin Microbiomes: From Death Scene to Morgue. Journal of Forensic Sciences, 2019, 64, 791-798.	1.6	40
11	The suitability of visual taphonomic methods for digital photographs: An experimental approach with pig carcasses in a tropical climate. Science and Justice - Journal of the Forensic Science Society, 2018, 58, 167-176.	2.1	18
12	New evidence of predation on humans by cookiecutter sharks in Kauai, Hawaii. International Journal of Legal Medicine, 2018, 132, 1381-1387.	2.2	7
13	Animal models for understanding microbial decomposition of human remains. Drug Discovery Today: Disease Models, 2018, 28, 117-125.	1.2	5
14	Sampling Dynamics for Volatile Organic Compounds Using Headspace Solid-Phase Microextraction Arrow for Microbiological Samples. Separations, 2018, 5, 45.	2.4	16
15	Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes, 2018, 9, 104.	2.4	80
16	Toward a universal equation to estimate postmortem interval. Forensic Science International, 2017, 272, 150-153.	2.2	27
17	Microbiome Tools for Forensic Science. Trends in Biotechnology, 2017, 35, 814-823.	9.3	93
18	Fluorescence Imaging of Posterior Spiracles from Second and Third Instars of Forensically Important Chrysomya rufifacies (Diptera: Calliphoridae) ,. Journal of Forensic Sciences, 2016, 61, 1578-1587.	1.6	4

DAVID O CARTER

#	Article	IF	CITATIONS
19	Changes in Soil Microbial Activity Following Cadaver Decomposition During Spring and Summer Months in Southern Ontario. Soil Forensics, 2016, , 243-262.	0.2	0
20	Microbiology of death. Current Biology, 2016, 26, R561-R563.	3.9	50
21	Cleaning Puparia for Forensic Analysis. Journal of Forensic Sciences, 2016, 61, 1356-1358.	1.6	2
22	The impact of carrion decomposition on the fatty acid methyl ester (FAME) profiles of soil microbial communities in southern Canada. Journal of the Canadian Society of Forensic Science, 2016, 49, 1-18.	0.9	9
23	Microbial community assembly and metabolic function during mammalian corpse decomposition. Science, 2016, 351, 158-162.	12.6	381
24	Carcass mass has little influence on the structure of gravesoil microbial communities. International Journal of Legal Medicine, 2016, 130, 253-263.	2.2	49
25	Using bacterial and necrophagous insect dynamics for post-mortem interval estimation during cold season: Novel case study in Romania. Forensic Science International, 2015, 254, 106-117.	2.2	34
26	Seasonal variation of postmortem microbial communities. Forensic Science, Medicine, and Pathology, 2015, 11, 202-207.	1.4	88
27	An initial investigation into the ecology of culturable aerobic postmortem bacteria. Science and Justice - Journal of the Forensic Science Society, 2015, 55, 394-401.	2.1	28
28	Vertebrate Decomposition Is Accelerated by Soil Microbes. Applied and Environmental Microbiology, 2014, 80, 4920-4929.	3.1	84
29	Dynamics of Ninhydrinâ€Reactive Nitrogen and <scp>pH</scp> in Gravesoil During the Extended Postmortem Interval. Journal of Forensic Sciences, 2013, 58, 1348-1352.	1.6	16
30	Seasonal Variation of Carcass Decomposition and Gravesoil Chemistry in a Cold (Dfa) Climate. Journal of Forensic Sciences, 2013, 58, 1175-1182.	1.6	61
31	Ground penetrating radar use in three contrasting soil textures in southern Ontario. Geological Society Special Publication, 2013, 384, 221-228.	1.3	3
32	A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. ELife, 2013, 2, e01104.	6.0	270
33	Potential carcass enrichment of the University of Tennessee Anthropology Research Facility: A baseline survey of edaphic features. Forensic Science International, 2012, 222, 4-10.	2.2	36
34	Alteration of Expirated Bloodstain Patterns by Calliphora vicina and Lucilia sericata (Diptera:) Tj ETQq0 0 0 rgB S123-S127.	T /Overlock 1.6	10 Tf 50 147 22
35	Changes in the Morphology and Presumptive Chemistry of Impact and Pooled Bloodstain Patterns by Lucilia sericata (Meigen) (Diptera: Calliphoridae)*. Journal of Forensic Sciences, 2011, 56, 1315-1318.	1.6	19
36	Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Science International, 2011, 209, 80-85.	2.2	62

DAVID O CARTER

#	Article	IF	CITATIONS
37	Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Science International, 2010, 200, 60-66.	2.2	141
38	Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition. Forensic Science International, 2009, 193, 37-41.	2.2	47
39	Research in Forensic Taphonomy: A Soil-Based Perspective. , 2009, , 317-331.		10
40	Can Temperature Affect the Release of Ninhydrin-Reactive Nitrogen in Gravesoil Following the Burial of a Mammalian (Rattus rattus) Cadaver?. , 2009, , 333-340.		2
41	Decomposition Studies Using Animal Models in Contrasting Environments: Evidence from Temporal Changes in Soil Chemistry and Microbial Activity. , 2009, , 357-377.		12
42	The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International, 2008, 180, 70-75.	2.2	125
43	Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition. Journal of Science Education and Technology, 2008, 17, 262-273.	3.9	16
44	Using Ninhydrin to Detect Gravesoil. Journal of Forensic Sciences, 2008, 53, 397-400.	1.6	42
45	Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology, 2008, 40, 129-137.	4.3	134
46	Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition?. Applied Soil Ecology, 2008, 40, 529-535.	4.3	30
47	Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia, 2007, 51, 295-299.	1.2	69
48	Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften, 2006, 94, 12-24.	1.6	487
49	Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 2006, 38, 1139-1145.	8.8	78
50	A Laboratory Incubation Method for Determining the Rate of Microbiological Degradation of Skeletal Muscle Tissue in Soil. Journal of Forensic Sciences, 2004, 49, 1-6.	1.6	29
51	A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. Journal of Forensic Sciences, 2004, 49, 560-5.	1.6	12
52	Mushrooms and taphonomy: the fungi that mark woodland graves. The Mycologist, 2003, 17, 20-24.	0.4	43
53	Taphonomic Mycota: Fungi with Forensic Potential. Journal of Forensic Sciences, 2003, 48, 1-4.	1.6	77
54	Taphonomic mycota: fungi with forensic potential. Journal of Forensic Sciences, 2003, 48, 168-71.	1.6	11