James M Lea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8083710/publications.pdf

Version: 2024-02-01

840776 752698 20 424 11 20 h-index citations g-index papers 37 37 37 755 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). Journal of Glaciology, 2014, 60, 314-322.	2.2	58
2	The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins. Earth Surface Dynamics, 2018, 6, 551-561.	2.4	58
3	Evaluation of existing and new methods of tracking glacier terminus change. Journal of Glaciology, 2014, 60, 323-332.	2.2	49
4	Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling. Journal of Glaciology, 2014, 60, 333-344.	2.2	34
5	Timing of the first drainage of the Baltic Ice Lake synchronous with the onset of Greenland Stadial 1. Boreas, 2016, 45, 322-334.	2.4	27
6	Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present. Cryosphere, 2014, 8, 2031-2045.	3.9	26
7	Influences of salinity on the physiology and distribution of the Arctic coralline algae, <i>Lithothamnion glaciale</i> (Corallinales, Rhodophyta). Journal of Phycology, 2018, 54, 690-702.	2.3	22
8	ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geoscientific Model Development, 2016, 9, 1673-1682.	3.6	20
9	Exceptional Retreat of Kangerlussuaq Glacier, East Greenland, Between 2016 and 2018. Frontiers in Earth Science, 2019, 7, .	1.8	19
10	Linear response of the Greenland ice sheet's tidewater glacier terminus positions to climate. Journal of Glaciology, 2021, 67, 193-203.	2.2	18
11	Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. Nature Communications, 2017, 8, 1020.	12.8	13
12	Remote Detection of Surge-Related Glacier Terminus Change across High Mountain Asia. Remote Sensing, 2021, 13, 1309.	4.0	13
13	The glacial geomorphology of upper Godthåbsfjord (Nuup Kangerlua) in southwest Greenland. Journal of Maps, 2018, 14, 45-55.	2.0	10
14	Quantification of turbate microstructures through a subglacial till: dimensions and characteristics. Boreas, 2014, 43, 869-881.	2.4	9
15	Iceâ€Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future. Geophysical Research Letters, 2022, 49, .	4.0	9
16	Shallow ice approximation, second order shallow ice approximation, and full Stokes models: A discussion of their roles in palaeo-ice sheet modelling and development. Quaternary Science Reviews, 2016, 147, 136-147.	3.0	8
17	Controls on the early Holocene collapse of the Bothnian Sea Ice Stream. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2494-2513.	2.8	6
18	Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica. Cryosphere, 2021, 15, 5785-5804.	3.9	6

#	Article	IF	CITATIONS
19	Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbr $ ilde{A}_1^1$). Cryosphere, 2022, 16, 219-236.	3.9	5
20	Greenland tidewater glacier advanced rapidly during era of Norse settlement. Geology, 2022, 50, 704-709.	4.4	4