Dion Dickman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8083319/publications.pdf

Version: 2024-02-01

all docs

218677 243625 2,376 47 26 44 citations h-index g-index papers 57 57 57 2384 docs citations times ranked citing authors

#	Article	IF	Citations
1	The Schizophrenia Susceptibility Gene <i>dysbindin</i> Controls Synaptic Homeostasis. Science, 2009, 326, 1127-1130.	12.6	195
2	A Slowed Classical Pathway Rather Than Kiss-and-Run Mediates Endocytosis at Synapses Lacking Synaptojanin and Endophilin. Cell, 2005, 123, 521-533.	28.9	176
3	Altered Synaptic Development and Active Zone Spacing in Endocytosis Mutants. Current Biology, 2006, 16, 591-598.	3.9	160
4	A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nature Neuroscience, 2007, 10, 980-989.	14.8	144
5	Emerging links between homeostatic synaptic plasticity and neurological disease. Frontiers in Cellular Neuroscience, 2013, 7, 223.	3.7	117
6	Endostatin Is a Trans-Synaptic Signal for Homeostatic Synaptic Plasticity. Neuron, 2014, 83, 616-629.	8.1	98
7	Rapid active zone remodeling consolidates presynaptic potentiation. Nature Communications, 2019, 10, 1085.	12.8	97
8	A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling. Neuron, 2010, 66, 220-234.	8.1	88
9	Endogenous tagging reveals differential regulation of Ca ²⁺ channels at single AZs during presynaptic homeostatic potentiation and depression. Journal of Neuroscience, 2019, 39, 3068-18.	3.6	81
10	Mutations in a <i>Drosophila</i> \hat{l} ± ₂ \hat{l} ´Voltage-Gated Calcium Channel Subunit Reveal a Crucial Synaptic Function. Journal of Neuroscience, 2008, 28, 31-38.	3.6	74
11	Homeostatic scaling of active zone scaffolds maintains global synaptic strength. Journal of Cell Biology, 2019, 218, 1706-1724.	5.2	66
12	Mapping sites responsible for interactions of agrin with neurons. Journal of Neurochemistry, 2002, 83, 271-284.	3.9	62
13	A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation. Cell Reports, 2017, 19, 2694-2706.	6.4	60
14	Snapin is Critical for Presynaptic Homeostatic Plasticity. Journal of Neuroscience, 2012, 32, 8716-8724.	3.6	58
15	Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration. Human Molecular Genetics, 2017, 26, 4153-4167.	2.9	56
16	Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genetics, 2017, 13, e1007117.	3.5	56
17	Extended Synaptotagmin Localizes to Presynaptic ER and Promotes Neurotransmission and Synaptic Growth in <i>Drosophila</i> . Genetics, 2017, 207, 993-1006.	2.9	55
18	Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy. Cell Reports, 2017, 21, 2339-2347.	6.4	54

#	Article	IF	Citations
19	Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. ELife, 2018, 7, .	6.0	52
20	The Innate Immune Receptor PGRP-LC Controls Presynaptic Homeostatic Plasticity. Neuron, 2015, 88, 1157-1164.	8.1	48
21	Gene Dosage in the Dysbindin Schizophrenia Susceptibility Network Differentially Affect Synaptic Function and Plasticity. Journal of Neuroscience, 2015, 35, 325-338.	3.6	43
22	MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. ELife, 2017, 6 , .	6.0	42
23	Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nature Communications, 2019, 10, 2998.	12.8	40
24	A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release. Cell Reports, 2018, 23, 1716-1727.	6.4	38
25	Importin- \hat{l}^211 Regulates Synaptic Phosphorylated Mothers Against Decapentaplegic, and Thereby Influences Synaptic Development and Function at the <i> Drosophila </i> Neuromuscular Junction. Journal of Neuroscience, 2010, 30, 5253-5268.	3.6	36
26	The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling. ENeuro, 2017, 4, ENEURO.0335-16.2017.	1.9	36
27	Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8, .	6.0	33
28	Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling. Nature Communications, 2018, 9, 1856.	12.8	30
29	New Approaches for Studying Synaptic Development, Function, and Plasticity Using <i>Drosophila</i> as a Model System. Journal of Neuroscience, 2013, 33, 17560-17568.	3.6	28
30	The Role of Histone Deacetylase 6 in Synaptic Plasticity and Memory. Cell Reports, 2017, 18, 1337-1345.	6.4	28
31	The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse. Journal of Neuroscience, 2016, 36, 12393-12411.	3.6	26
32	A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength. Journal of Neuroscience, 2019, 39, 4051-4065.	3.6	24
33	Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cellular and Molecular Life Sciences, 2021, 78, 3159-3179.	5.4	22
34	Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOCâ€1 and BORC complexes. Developmental Neurobiology, 2018, 78, 311-330.	3.0	21
35	The <i>Drosophila </i> Postsynaptic DEG/ENaC Channel <i>ppk29 </i> Contributes to Excitatory Neurotransmission. Journal of Neuroscience, 2017, 37, 3171-3180.	3.6	19
36	Estimation of the Readily Releasable Synaptic Vesicle Pool at the Drosophila Larval Neuromuscular Junction. Bio-protocol, $2019, 9, \ldots$	0.4	16

#	Article	IF	CITATIONS
37	The E3 ligase Highwire promotes synaptic transmission by targeting the NADâ€synthesizing enzyme dNmnat. EMBO Reports, 2019, 20, .	4.5	13
38	Engineering skeletal muscle tissues with advanced maturity improves synapse formation with human induced pluripotent stem cell-derived motor neurons. APL Bioengineering, 2021, 5, 036101.	6.2	13
39	The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25830-25839.	7.1	10
40	Developmental arrest of <i>Drosophila</i> larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development (Cambridge), 2020, 147, .	2.5	10
41	Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly. Current Biology, 2021, 31, 1711-1725.e5.	3.9	10
42	Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments. Frontiers in Cellular Neuroscience, 2020, 14, 196.	3.7	9
43	Autocrine inhibition by a glutamate-gated chloride channel mediates presynaptic homeostatic depression. Science Advances, 2021, 7, eabj1215.	10.3	9
44	Class II cytoplasmic and transmembrane domains are not required for class II-mediated B cell spreading. Immunology Letters, 1995, 44, 67-74.	2.5	7
45	Tissue-Specific Ribosome Profiling in Drosophila. Methods in Molecular Biology, 2021, 2252, 175-188.	0.9	2
46	Editorial: Homeostatic and retrograde signaling mechanisms modulating presynaptic function and plasticity. Frontiers in Cellular Neuroscience, 2015, 9, 380.	3.7	1
47	One domain to rule them all: "In synapse―reconstitution of core active zone functions. Neuron, 2022, 110, 1435-1438.	8.1	1