Stéphane Cuenot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8082887/publications.pdf

Version: 2024-02-01

33 papers 2,072 citations

16 h-index 395702 33 g-index

34 all docs

34 docs citations

34 times ranked

2607 citing authors

#	Article	IF	CITATIONS
1	Three-dimensional structures, dynamics and calcium-mediated interactions of the exopolysaccharide, Infernan, produced by the deep-sea hydrothermal bacterium Alteromonas infernus. Carbohydrate Polymers, 2022, 276, 118732.	10.2	8
2	Microgels based on Infernan, a glycosaminoglycan-mimetic bacterial exopolysaccharide, as BMP-2 delivery systems. Carbohydrate Polymers, 2022, 284, 119191.	10.2	7
3	Interactions between infernan and calcium: From the molecular level to the mechanical properties of microgels. Carbohydrate Polymers, 2022, 292, 119629.	10.2	4
4	Mechanical relaxations of hydrogels governed by their physical or chemical crosslinks. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105343.	3.1	11
5	OSIP1 is a selfâ€assembling DUF3129 protein required to protect fungal cells from toxins and stressors. Environmental Microbiology, 2021, 23, 1594-1607.	3.8	3
6	Marine Polysaccharide-Collagen Coatings on Ti6Al4V Alloy Formed by Self-Assembly. Micromachines, 2019, 10, 68.	2.9	9
7	Microcarriers Based on Glycosaminoglycan-Like Marine Exopolysaccharide for TGF-Î ² 1 Long-Term Protection. Marine Drugs, 2019, 17, 65.	4.6	20
8	Atomic Force Microscopy: A Promising Tool for Deciphering the Pathogenic Mechanisms of Fungi in Cystic Fibrosis. Mycopathologia, 2018, 183, 291-310.	3.1	3
9	Investigation of interactions between the marine GY785 exopolysaccharide and transforming growth factor-l ² 1 by atomic force microscopy. Carbohydrate Polymers, 2018, 202, 56-63.	10.2	9
10	Nanoscale Mapping of Multiple Lectins on Cell Surfaces by Singleâ€Molecule Force Spectroscopy. Advanced Biology, 2017, 1, e1700050.	3.0	5
11	A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola. Fungal Biology and Biotechnology, 2017, 4, 1.	5.1	25
12	Understanding the Assembly Mechanism of Proteins from Monte Carlo Simulations. Applied Mathematics, 2017, 08, 280-292.	0.4	1
13	Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 535-543.	5.2	48
14	Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications. Carbohydrate Polymers, 2016, 142, 213-221.	10.2	18
15	A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins. PLoS ONE, 2015, 10, e0128680.	2.5	18
16	Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1231-1237.	2.3	24
17	Self-assembly of proteins into a three-dimensional multilayer system: Investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1137-1144.	2.3	18
18	Cell Wall Modifications during Conidial Maturation of the Human Pathogenic Fungus Pseudallescheria boydii. PLoS ONE, 2014, 9, e100290.	2.5	23

#	Article	IF	Citations
19	Control of Swelling of Responsive Nanogels by Nanoconfinement. Small, 2012, 8, 2978-2985.	10.0	12
20	Investigation of Thermoresponsive Nano onfined Polymer Brushes by AFMâ€Based Force Spectroscopy. Macromolecular Chemistry and Physics, 2012, 213, 580-586.	2.2	9
21	Layer-by-Layer Functionalization of Carbon Nanotubes with Synthetic and Natural Polyelectrolytes. Langmuir, 2010, 26, 2779-2784.	3.5	16
22	Variation of Elastic Properties of Responsive Polymer Nanotubes. Journal of Physical Chemistry B, 2010, 114, 4939-4944.	2.6	11
23	Tuning electrical properties of conjugated polymer nanowires with the diameter. Applied Physics Letters, 2007, 90, 102114.	3.3	51
24	Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 2007, 126, 198-203.	7.8	46
25	First Insights into Electrografted Polymers by AFM-Based Force Spectroscopy. Macromolecules, 2006, 39, 8428-8433.	4.8	37
26	Mechanochemistry: targeted delivery of single molecules. Nature Nanotechnology, 2006, 1, 122-125.	31.5	95
27	Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods, 2005, 2, 515-520.	19.0	324
28	Are Electrografted Polymers Chemisorbed or Physisorbed onto their Substrate?. Macromolecular Chemistry and Physics, 2005, 206, 1216-1220.	2.2	11
29	Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper)., 2005,,.		6
30	Synthesis of Pyrene-Containing Polymers and Noncovalent Sidewall Functionalization of Multiwalled Carbon Nanotubes. Chemistry of Materials, 2004, 16, 4005-4011.	6.7	163
31	Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 2004, 69, .	3.2	739
32	Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy. Journal of Applied Physics, 2003, 93, 5650-5655.	2.5	80
33	Elastic Modulus of Polypyrrole Nanotubes. Physical Review Letters, 2000, 85, 1690-1693.	7.8	216